
M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Building a Rat Brain in 20 seconds

Tammo Ippen1,2, Jochen M. Eppler3, Markus Diesmann1,4,5, Hans Ekkehard Plesser2,1

1 Institute of Neuroscience and Medicine (INM-6) and Institute of Advanced Simulations (IAS-6), Jülich Research Centre and JARA, Jülich, Germany
2 Department of Mathematical Science and Technology, Norwegian University of Life Science, Ås, Norway
3 Simulation Laboratory Neuroscience – Bernstein Facility Simulation and Database Technology, Institute of Advanced Simulations, Jülich Research Centre and

JARA, Jülich, Germany
4 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Germany
5 Department of Physics, Faculty 1, RWTH Aachen University, Germany

Network Setup in NEST
The networks in NEST consists of nodes (neurons and devices for stimulating and
recording from the neurons) and connections that allow the communication between
nodes. As the number of connections is about 104 times the number of neurons in
biological neuronal networks, their creation takes up the largest part of the setup time. To
understand the runtime behavior, we need to look at the data structures and algorithms
for the creation of connections.

Large-Scale Simulations
In simulations large enough to exploit the entire JUQUEEN supercomputer [7] other
effects dampen the wiring performance. Neurons are distributed among the compute
nodes in a round robin fashion. When executing the FixedIndegree algorithm from Fig. 3,
only now and then there is a local target neuron (every 30k up to every 2000k neuron is
local): most of the time, there is no local target and no connections are created. Fig. 5 to
7 show the impact of an improved iteration scheme and the use of optimized memory
allocators when constructing a random balanced neuronal network [3] with ~200 x 106
point neurons and ~2.25 x 1012 synapses (about the size of a rat brain).

•Building rat-brain-sized networks in 20 seconds  
(~20 x faster than before)

➡ more comprehensive in silico experiments.

•Scalable construction of neuronal networks from single
compute node simulations to supercomputer simulations.

➡ better usage of available supercomputer resources

Acknowledgement: Supported by the Helmholtz Association through the Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain” and the European Union Seventh Framework Programme ([FP7/2007-2013]) under grant agreement no 604102 (Human Brain Project, HBP) and The

Jülich Aachen Research Alliance (JARA). Use of the JUQUEEN supercomputer in Jülich was made possible by VSR computation time grant JINB33.

Improved Memory Allocation
In Fig. 3 we show that most time is spent in thread-parallel allocation of memory for the

objects. Optimized thread-aware memory
allocators (tcmalloc [8], jemalloc [5], TBB [4],
ptmalloc3 [6], …) have thread-private heaps
and cache small objects on each thread. The
comic illustrates the different memory
allocation strategies. Fig. 4 shows the
performance of different allocators supporting
the network construction.

Fig. 5: Wiring performance of ‘vanilla’ NEST 2.6.0. The
color codes are the same as explained in Fig. 3. There is
no scaling beyond 16 threads. Further two gaps can be
observed, which are caused by idling in the connection
algorithms:
for (size_t i=target_from; i <= target_to; i++)
{
 // This is true for neurons on remote processes
 if (!is_local_gid(i))
 continue;

 Node* target = get_node(i);

 // Check, if target is on our thread
 if (target->get_thread() != tid)
 continue;

 // select random sources & do the connecting
}

Fig. 6: Wiring performance of modified NEST 2.6.0. The
color codes are the same as explained in Fig. 3. After
iterating local targets only, performance increases
considerably. Scaling is again limited by memory
allocation:
for (size_t k = 0; k < local_nodes_.size(); ++k)
{
 Node* target = local_nodes_.get_node_by_index(k);
 size_t i = target->get_gid();

 if (!(target_from <= i && i <= target_to))
 continue;

 // Check, if target is on our thread
 if (target->get_thread() != tid)
 continue;

 // select random sources & do the connecting
}

Fig. 7: Comparing wiring performance of large-scale
simulations: vanilla NEST (dark blue), modified NEST
(green) and modified NEST with specialized allocators (red
for tcmalloc, yellow for jemalloc). Using the alternative
iteration schema and specialized allocators allow almost
perfect linear scaling.

Constructing random balanced networks [3] with ~200 x
106 point neurons and ~2.25 x 1012 synapses (mean and
std. deviation of 3 samples, NEST 2.6.0, performed on
JUQUEEN supercomputer in the FZ Jülich (28.672 x IBM
PowerPC A2, 1.6 GHz, 16 GB RAM, 16 cores per node
with up to 4 hardware threads per core)).

Introduction
With the neural simulator NEST [1] biological neuronal networks can be simulated and
researched. Being a hybrid OpenMP and MPI parallel application, NEST is already
capable of simulating neuronal networks of spiking point neurons of the size of ~1% of
the human brain [7]. To further investigate the brain, more complex and larger networks
will become necessary. NEST’s data structures [2] enable efficient storage of those
networks. We present our ongoing work to provide efficient and scalable algorithms to
construct the networks.

Future computer architectures increase the number of cores on single compute nodes to
keep the energy consumption at a reasonable level, while increasing compute
capabilities. Using purely MPI-based parallelization on such systems entails a huge
overhead, which makes the use of efficient methods for node-based parallelism
essential. However, previous implementations of a parallelized network setup did not
scale well when using OpenMP (Fig. 1).

Fig. 1: Constructing a random balanced network [3]
with 25.000 point neurons and ~62.5 x 109 synapses
(mean and std. deviation of 5 samples, NEST 2.6.0,
AMD Opteron 6174, 48 cores, 2.2 GHz). The
construction with pure MPI shows scaling, while
construction with pure OpenMP basically shows no
scaling beyond 6 threads

Fig. 3: Inspecting the thread-parallel construction phase. The FixedIndegree connecting algorithm (sketched on the
left) dominates the construction phase. Within FixedIndegree, most time is spend in the single_connect part, which
allocates memory for the connection objects. The colors in the figure correspond to the colors in the algorithm.

Start

tgid ← targets.begin()

tgid != targets.end()

++tgid

Stop
No

next target

j < indegree

j ← 0

++j

run over
all targets

No

Yes

Yes

select indegree
many sources for
tgid

sgid ← select random ids from the sources
(check for autapses/multapses)

single_connect(sgid, tgid, target_thread, rng)

Fig. 4: Comparing wiring time using different memory allocators. Continuous curves show the network construction
time (left axis) and the bars show the memory consumption (right axis). Scalable performance for threads is
achieved at the expense of larger memory consumption, which is still considerably smaller than the memory
consumption of MPI.

Memory Cake

unguarded access to the cake
can make consumers reach for

the same piece

Memory Cakeconsumers wait in a line

a waitress distributes
cake pieces one by one

Memory Cake

a waitress makes sure that
all plates are filled

each consumer has a separate plate and
can consume as much cake as available

I

II

III

Massively Parallel Neuronal Network Model Construction

Fig. 2: NEST’s connection infrastructure [2] is optimized
for large scale simulations, where a source neuron only
has a few local target neurons. For smaller scale
simulations the data structures evolve into more general
containers.

• • •tid• • •

• •
 •

so
ur

ce
 id

• •
 •

for all threads

fo
r a

ll
so

ur
ce

 n
eu

ro
ns

case 0: no targets => 0 in bitmask

case 2: K >= Kcutoff
Connector with a vector
holding connections of
one type

case 3: different types of connection
Connector holding hom. Connectors

case 1: K < Kcutoff
Connector with exactly K
connections of one type

K connections

1 Bit

K connections
+ overhead

most
expensive

References
[1] Gewaltig & Diesmann (2007), Scholarpedia, doi: 10.4249/scholarpedia.1430

[2] Kunkel et al. (2014), Front. Neuroinform, doi: 10.3389/fninf.2014.00078

[3] Brunel (2000), Comp. Neuroscience, doi: 10.1023/A:1008925309027

[4] Kukanov et al. (2007), Intel Technology Journal, doi: 10.1535/itj.1104.05

[5] Evans (2006), Proceedings of the BSDCan Conference, www.canonware.com/jemalloc/
[6] Glocker (2006), www.malloc.de/en/index.html

[7] Himeno (2013), www.riken.jp/en/pr/press/2013/20130802_1/

[8] Ghemawat (2007), https://gperftools.googlecode.com/git/doc/tcmalloc.html

