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Network Setup in NEST
The networks in NEST consists of nodes (neurons and devices for stimulating and 
recording from the neurons) and connections that allow the communication between 
nodes. As the number of connections is about 104 times the number of neurons in 
biological neuronal networks, their creation takes up the largest part of the setup time. To 
understand the runtime behavior, we need to look at the data structures and algorithms 
for the creation of connections.

Large-Scale Simulations
In simulations large enough to exploit the entire JUQUEEN supercomputer [7] other 
effects dampen the wiring performance. Neurons are distributed among the compute 
nodes in a round robin fashion. When executing the FixedIndegree algorithm from Fig. 3, 
only now and then there is a local target neuron (every 30k up to every 2000k neuron is 
local): most of the time, there is no local target and no connections are created. Fig. 5 to 
7 show the impact of an improved iteration scheme and the use of optimized memory 
allocators when constructing a random balanced neuronal network [3] with ~200 x 106 
point neurons and ~2.25 x 1012 synapses (about the size of a rat brain).

•Building rat-brain-sized networks in 20 seconds  
( ~20 x faster than before )

➡ more comprehensive in silico experiments.


•Scalable construction of neuronal networks from single 
compute node simulations to supercomputer simulations.

➡ better usage of available supercomputer resources

Acknowledgement: Supported by the Helmholtz Association through the Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain” and the European Union Seventh Framework Programme ([FP7/2007-2013]) under grant agreement no 604102 (Human Brain Project, HBP) and The 

Jülich Aachen Research Alliance (JARA). Use of the JUQUEEN supercomputer in Jülich was made possible by VSR computation time grant JINB33.

Improved Memory Allocation
In Fig. 3 we show that most time is spent in thread-parallel allocation of memory for the 

objects. Optimized thread-aware memory 
allocators (tcmalloc [8], jemalloc [5], TBB [4], 
ptmalloc3 [6], …) have thread-private heaps 
and cache small objects on each thread. The 
comic illustrates the different memory 
allocation strategies. Fig. 4 shows the 
performance of different allocators supporting 
the network construction.

Fig. 5: Wiring performance of ‘vanilla’ NEST 2.6.0. The 
color codes are the same as explained in Fig. 3. There is 
no scaling beyond 16 threads. Further two gaps can be 
observed, which are caused by idling in the connection 
algorithms:
for (size_t i=target_from; i <= target_to; i++) 
{ 
  // This is true for neurons on remote processes 
  if ( !is_local_gid(i) ) 
    continue; 

  Node* target = get_node(i); 

  // Check, if target is on our thread 
  if (target->get_thread() != tid) 
    continue; 

  // select random sources & do the connecting 
}

Fig. 6: Wiring performance of modified NEST 2.6.0. The 
color codes are the same as explained in Fig. 3. After 
iterating local targets only, performance increases 
considerably. Scaling is again limited by memory 
allocation:
for (size_t k = 0; k < local_nodes_.size(); ++k) 
{ 
  Node* target = local_nodes_.get_node_by_index(k); 
  size_t i = target->get_gid(); 

  if (!(target_from <= i && i <= target_to)) 
    continue; 
  
  // Check, if target is on our thread 
  if (target->get_thread() != tid) 
    continue; 

  // select random sources & do the connecting 
}

Fig. 7: Comparing wiring performance of large-scale 
simulations: vanilla NEST (dark blue), modified NEST 
(green) and modified NEST with specialized allocators (red 
for tcmalloc, yellow for jemalloc). Using the alternative 
iteration schema and specialized allocators allow almost 
perfect linear scaling.


Constructing random balanced networks [3] with ~200 x 
106 point neurons and ~2.25 x 1012 synapses (mean and 
std. deviation of 3 samples, NEST 2.6.0, performed on 
JUQUEEN supercomputer in the FZ Jülich (28.672 x IBM 
PowerPC A2, 1.6 GHz, 16 GB RAM, 16 cores per node 
with up to 4 hardware threads per core)).

Introduction
With the neural simulator NEST [1] biological neuronal networks can be simulated and 
researched. Being a hybrid OpenMP and MPI parallel application, NEST is already 
capable of simulating neuronal networks of spiking point neurons of the size of ~1% of 
the human brain [7]. To further investigate the brain, more complex and larger networks 
will become necessary. NEST’s data structures [2] enable efficient storage of those 
networks. We present our ongoing work to provide efficient and scalable algorithms to 
construct the networks.


Future computer architectures increase the number of cores on single compute nodes to 
keep the energy consumption at a reasonable level, while increasing compute 
capabilities. Using purely MPI-based parallelization on such systems entails a huge 
overhead, which makes the use of efficient methods for node-based parallelism 
essential. However, previous implementations of a parallelized network setup did not 
scale well when using OpenMP (Fig. 1).

Fig. 1: Constructing a random balanced network [3] 
with 25.000 point neurons and ~62.5 x 109 synapses 
(mean and std. deviation of 5 samples, NEST 2.6.0, 
AMD Opteron 6174, 48 cores, 2.2 GHz). The 
construction with pure MPI shows scaling, while 
construction with pure OpenMP basically shows no 
scaling beyond 6 threads

Fig. 3: Inspecting the thread-parallel construction phase. The FixedIndegree connecting algorithm (sketched on the 
left) dominates the construction phase. Within FixedIndegree, most time is spend in the single_connect part, which 
allocates memory for the connection objects. The colors in the figure correspond to the colors in the algorithm.
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Fig. 4: Comparing wiring time using different memory allocators. Continuous curves show the network construction 
time (left axis) and the bars show the memory consumption (right axis). Scalable performance for threads is 
achieved at the expense of larger memory consumption, which is still considerably smaller than the memory 
consumption of MPI.
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Massively Parallel Neuronal Network Model Construction

Fig. 2: NEST’s connection infrastructure [2] is optimized 
for large scale simulations, where a source neuron only 
has a few local target neurons. For smaller scale 
simulations the data structures evolve into more general 
containers.
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