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Abstract

Comparing encryption algorithms at an abstract level, they all have a well designed,
but fixed computation graph and they use the key and the plaintext data solely as
input to this graph. This paper introduces a new idea to make the computation graph
dependent from the key, in other words two different input keys lead to two different
encryption algorithm or computation graphs.
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1. Introduction

A new kind of symmetric encryption algorithm is developed. A symmetric encryption
algorithm uses one secret key to encrypt and decrypt data or messages. They are the first
developed cryptographic algorithms, starting with hieroglyphics and Atbash. Today,
they are of fundamental importance when it comes to secret or private information
excange in a private, business, political or military environment. They are designed to
be fast and unbreakable – an attempt to break it should at least last several decades or
centuries.
The current industry standard is the Rijndael cypher, better known as Advanced

Encryption Standard (AES) [1]. This encryption algorithm won over 14 other candidates
during the standardisation process in October 2000.

During the standardisation process, four additional encryption algorithms were an-
nounced to be finalists – MARS, RC6, Serpent and Twofish. They all succeeded in the
first round of the process and are meant to be equally strong compared to Rijndael [10].
A short description of these cyphers follows in Section 1.1.

Comparing these encryption algorithms at an abstract level, they all have a well
designed, but fixed computation graph and they use the key and the plaintext data solely
as input to this graph. This paper introduces a new idea to make the computation graph
dependent from the key, in other words two different input keys lead to two different
encryption algorithm or computation graphs.

There exist good reasons why one should develop new, improved encryption algo-
rithms. On the one hand, not all of the current encryption algorithms are free of suspi-
cious behavior, such that vulnerability attacks are possible or that the algorithm even
contains some kind of backdoor. For example, the former encryption standard DES had
suspicious security holes in the form of a backdoor regarding its S-boxes and the current
standard can be specified by a continuous fraction, which might be a hook for an efficient
attack. Strengthening the confidence in the encryption algorithm is crucial, if you want
the algorithm to be used.

On the other hand, computation power increased rapidly over the past years and it
is very likely, that computation power increases further in the next years. The security
margin of 128-bit / 192-bit / 256-bit keys might be just as secure in the future, as the
56-bit key margin of DES is now. So easy adoption to new security margins is essential,
if the algorithm is to be used for a long time.
The ambitions for this encryption algorithm are, that it is at least as secure as the five

AES finalists and that it is fast enough and easy enough to implement, to be actually used
in future applications. Furthermore it should be easy and not limited, to increase the
security of the algorithm, if more security is needed. To achieve these, the AES finalists
get carefully examined and cryptographic strong operations are identified. From these



1. Introduction

a set of operations is selected. Their order, arrangement and their operands, i.e. the
computation graph, then are determined by the key. The key length itself is not limited
and should be solely deciding for the length of the computation graph, just as for the
encryption strength.
During the development, many different approaches are tried and analyzed. The first

attempt is made in the bachelor thesis [11] and is taken as is as a reference to the
algorithm that is developed here. Many others followed, changing the set of operations
and the way the parameters, like the order, the arrangement and the operands, are
determined. The one, that is presented, passes the most tests from the Statistical Test
Suite, but since not all tests pass all the time, further researches have to be done.
This bachelor thesis can be partitioned into three main parts. The first part gives an

overview over the design space for encryption algorithms. It starts with small parts, like
which operations are useful at all, and finishes with the final, fully functional encryption
algorithm – Key Orientated Operation Selection (KOOS).
After that, the analysis of this algorithm is presented. One the one hand with the

tools used to analyse the AES candidates. The testsuite itself and the analysed sets of
data are explained, too. On the other hand the performance of the algorithm is tested
and analysed.
Finally, the findings and conclusions are summarised and further research has to be

done.

1.1. State of the Art

The five encryption algorithms, that were announced as finalists of the AES standardi-
sation process, can be seen as the State of the Art of symmetric encryption algorithms.
All these are unbroken and frequently used in miscellaneous applications.
The AES winner, the Rijndael cypher, consists of four functions to manipulate the

data, also referred to as state. The state is arranged as a matrix with four bytes in each
row and column. The four functions are repeated several times one after another – one
to substitute bytes, one to shift rows, one to mix columns and the last one to add the
round key. [1]
MARS is a very symmetric cypher, consistiong of six parts: First, parts of the key

are added to the plaintext, then eight rounds of unkeyed forward mixing with heavy use
of S-boxes are performed. The third and fourth part are eight rounds of keyed forward
and backward transformations, respectively, with the aid of the E-function. In the end
there are eight rounds of unkeyed backwards mixing with the S-boxes again and parts
of the key become substracted from the current state of the plaintext. [4]
The RC6 cypher greatly depends on data-dependant rotations. First, some parts

of the key are added to half of the plaintext, then several rounds of data-dependant
rotations, additions and a permutation are performed. Finally, another part of the key
is added to the other half of the plaintext. [7]
The Serpent cypher consists of 32 rounds and in each round first a part of the key is

exclusive or’ed to the current state of the plaintext (key mixing), then reversable S-boxes
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change the current state and finally, a linear transformation is applied to the current
state. In the last round this linear transformation is exchanged with another key mixing.
[2]
The Twofish cypher performes 16 Feistel-like networkes and before and afterwards it

exclusive or’s some parts of the key to the plaintext. The used Feistel function consists
of bijective, key dependant 8-by-8-bit S-boxes, a MDS matrix and a pseudo-Hadamard
transformation. [9]
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2. Algorithms

This chapter consists of three parts: First, the idea and the design space is explored. It
shows which operations and methods are useful for encryption algorithms in general and
in particular for the algorithm that is developed here. After that, all used operations are
discussed in detail. As the final encryption algorithm solely works on 32-bit integer
words, the description of the operations in here are limited to their 32-bit version.
Finally, the developed algorithm is presented.

2.1. Design Space

The goal is to develop an encryption algorithm, whose operations, operands and their or-
der are all dependent on the key. There are certain requirements to the operations: They
have to be reversible, they should be fast and they should have a certain cryptographic
strength. There are also requirements to the operands, like the possible operands should
be equally often chosen and successive applications of operands and operations should
not erase their effect, e.g. multiple applications of exclusiv or with the same operands
may lead to small or no differences between the plaintext and the cyphertext. Given
that all these parameters are extracted from the key, the algorithm needs a method that
extract them equally disributed and a method to modify keys that would result in bad
distributed parameters.
Looking at some other encryption algorithms, the set of possible operations becomes

clear. There are simple, reversible and fast operations like XOR, addition and substrac-
tion and at least one of them is used in every encryption algorithm. Mostly, they are
used to mix the key and and the plaintext, like in AES [1]. This is often also called key
whitening. Then there are several kinds of circular shifts or rotations, depending on the
current state of the plaintext and the key as well as static ones. MARS and especially
RC6 frequently use them. [5]
Permutations or P-boxes are another method to shuffle bits, bytes or other chunks of

the current state of the plaintext.
Furthermore, Feistel networks are great methods to distribute changes in one word of

the plaintext to one or all other words. Therefor the word is modified by an F-function
and then, with an easily reversible function like XOR or addition, applied on the other
words.
Finally, many algorithms use table-lookups, so called S-boxes. These S-boxes use

predefined tables to replace some parts of the current state of the plaintext. It is very
hard to create good S-boxes and sometimes these tables have to be reversible, too, e.g.
Serpent uses reversible S-boxes. Though good S-boxes are cryptographic strong, their
principle could lead to the suspicion, the algorithm may has a backdoor. Because of this



and the fact, that the S-boxes in principle does not depend on the key, they are not that
suitable for the encryption algorithm that is developed in here.

2.2. Operations

Here the operations addition, XOR, rotation, negation and multiplication are discussed.
Their functionality and some examples are discribed. All operations get two unsigned
integer k and p as input and return one unsigned integer c as output, where p is meant
to be the plaintext and c is meant to be the cyphertext. k may be a key value or some
other intermediate value.

2.2.1. Addition

This is the normal integer addition modulo 232. To encrypt a word, calculate c =
(p + k) mod 232 and to decrypt p = (c − k) mod 232. Of course the modulo operation
can be left out, because of the 32-bit unsigned integer. One example:

k = 0x9BD69510, p = 0xED8BA100
c = (0x9BD69510+ 0xED8BA100) mod 232 = 0x89623610
p = (0x89623610− 0x9BD69510) mod 232 = 0xED8BA100

2.2.2. XOR

A bitwise exclusiv or operation is performed on the operands p and k. Hence XOR itself
is its inverse, encryption and decryption are the same.

k = 0x9BD69510, p = 0xED8BA100
c = 0x9BD69510 XOR 0xED8BA100 = 0x765D3410
p = 0x765D3410 XOR 0x9BD69510 = 0xED8BA100

2.2.3. Rotation

A rotation of p to the left is performed. The number of rotations equals the value of the
five most significant bits of the multiplication k∗(2∗k+1). With this multiplication you
make sure, that the number of rotations depent on all bits in k and not just on the five
most significant [5]. This is similar to the way RC6 performes data-dependant-rotations
[7]. To decrypt such a rotation to the left, simply rotate the same number of rotations
to the right.
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2. Algorithms

k = 0x9BD69510 , p = 0xED8BA100
(0x9BD69510 ∗ (2 ∗ 0x9BD69510+ 1)) = 0x76EDD710
The five most significant bits are: 0x76EDD710� 27 = 0xE = 14

c = 0xED8BA100 ≪ 14 = 0xE8403B62
p = 0xE8403B62 ≫ 14 = 0xED8BA100

2.2.4. Negation

If the operand k is even, then it returns p with all its bits flipped, if not, it returns p
as it is. This is not a very strong operation, because it uses only one bit in one of its
operands and changes – in 50 % of the cases – all bits of the other one, but on a large
scale and assuming the zeros and ones in the k’s are equally and randomly disributed
about 50 % of the bits are changed.

2.2.5. Multiplication

The operands p and k are divided into two 16 bit integer p1, p2, k1 and k2. To encrypt
p each pair k1 and p1, k2 and p2 perform a multiplication modulo the prime number
216 + 1. Hence zero is not a valid value for this primitive residue class and the value 216
is not in the range of a 16 bit integer each of the 16 bit operands become increased by
one before the multiplication takes place and afterwards the results become decreased
by one.

(c1 + 1) = (k1 + 1) ∗ (p1 + 1) mod (216 + 1)

(c2 + 1) = (k2 + 1) ∗ (p2 + 1) mod (216 + 1)

To decrypt, the multiplicative inverse of (k1+ 1) and (k2+ 1) must be determined (e.g.
by using Euclid’s algorithm) and after that the multiplication is analog.

k = 0x9BD69510, p = 0xED8BA100
c1 + 1 = (0x9BD6+ 1) ∗ (0xED8B+ 1) mod (216 + 1) = (0xB3F9+ 1)

c2 + 1 = (0x9510+ 1) ∗ (0xA100+ 1) mod (216 + 1) = (0xE851+ 1)

⇒ c = 0xB3F9E851

p1 + 1 = (0x9BD6 + 1)−1 ∗ (0xB3F9 + 1) mod (216 + 1)

= 0x0F49 ∗ 0xB3FA mod (216 + 1) = 0xED8B+ 1

p2 + 1 = (0x9510+ 1)−1 ∗ (0xE851+ 1) mod (216 + 1)

= 0x2D32 ∗ 0xE852 mod (216 + 1) = 0xA100+ 1

⇒ p = 0xED8BA100
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2.3. Permutation

In the algorithm two types of permutations are performed. One to shuffle the 32-bit
plaintext words and one to shuffle 16-bit words between two plaintext words. The
permutations in this section are all given in cycle notation, i.e. a permutation σ =
(2 4)(3 0 1) exchanges 2 and 4, and 3 is transposed to 0, 0 to 1 and 1 to 3.

2.3.1. Address Permutation

The plaintext is partitioned into two to eight 32-bit word. Then a corresponding per-
mutation p of the S2 to S8 is extracted from the key and applied to the order of the
plaintext words. E.g. (a 160 bit plaintext is partitioned into an zero based array of
32-bit words):

p = (2 4)(3 0 1)

State: (0x9BD69510, 0xED8BA100, 0x12345678, 0x0, 0xFFFFFFFF)

Applying the permutation, the state changes as follows:

State: (0x0, 0x9BD69510, 0xFFFFFFFF, 0xED8BA100, 0x12345678)

2.3.2. Block Permutation

The permutation shuffels 16-bit blocks of two 32-bit operands a and b via one out of the
three independent permutations of the symmetric group S4 with an order of four. The
permutations are:

perm0 = (0 3 2 1) perm0−1 = (1 2 3 0)

perm1 = (0 2 1 3) perm1−1 = (3 1 2 0)

perm2 = (0 1 3 2) perm2−1 = (2 3 1 0)

Let a = p0 p1 and b = p2 p3 be the split-up of a and b. Performing the permutation
perm0 the results are a′ = p3 p0 and b′ = p1 p2, in detail the 16 bits in position zero
(p0) become the 16 bits in position three (p3) and so on.
This permutation can be reversed by using the inverse permutation permX−1, respec-

tively.

2.4. Feistel Network

A Feistel Network describes an arrangement, in which one word w of the plaintext
effects one or all other words. Therefor the word w often is modified by an arbitrary,
not necessarily invertible F-function and then applied to the other words via an easily
invertible function, like addition or XOR. An illustration of this arrangement can be

9



2. Algorithms

viewed in Figure 2.1. Hence the word w is carried on unchanged, a Feistel Network is
always reversible.
Here three different F-functions are used: An function inspired by the f-box of the

encryption algorithm IDEA, a variation of the E-function of the encryption algorithm
MARS and a simple multiply-with-carry pseudo-random number generator invented by
George Marsaglia.

word0 word1 word2 word3

F-function

word0 word1' word2' word3'

+

+

+

word0 word1 word2 word3

F-function

word0 word1' word2' word3'

-

-

-

Figure 2.1.: Feistel Network: Encryption (left) and decryption (right).

2.4.1. F-Box

As can be seen in Figure 2.2, this F-function needs four input values, as they are P1,
P2, K1 and K2, and returns two output values C1 and C2. Each of these values are
16 bit integer. In this version the F-box gets one 32-bit integer from the current state
of the plaintext P and one 32-bit key K. Then it splits up P and K into P1, P2, K1
and K2, with P1 and K1 contain the most significant bits and P2 and K2 contain
the least significant bits of P and K, respectively. The returned values C1 and C2 are
concatenated to one 32-bit output value C with C1 as its most significant bits and C2
as its least significant bits. Finally, C is applied to the other words with the operation
XOR.
The operation • is a multiplication modulo the prime number 216 + 1. As described

in Section 2.2.5 both operands are increased by one before the multiplication and the
result is decreased by one. The operation is the regular 16 bit integer addition.

2.4.2. E-Function

The E-function is a well designed part of the “cryptographic core” of the MARS encryp-
tion algorithm. The function is illustrated in Figure 2.3. It gets one 32-bit integer in
from the plaintext and two 32-bit keys K1 and K2 as input and returns three 32-bit
outputs R, M and L. These values are added to the other plaintext words one after

10



•

•

K1

P1 P2

K2

C2C1

Figure 2.2.: IDEA’s f-box

another: the first word plus L, the second plus M , the third plus R and the fourth word
again plus L and so on.

The operations are: The regulare 32-bit multiplication • , the regular 32-bit addition
, XOR and two kinds of rotations – “n ≪” is a fixed left-rotation by n and “≪”

is a data-dependent rotation by the value of the five least significant bits of the data.
Unfortunately the original E-function contains an S-box S , but in this version the table
of the S-box is replaced by the key itself, i.e. the value in + K1 is substituted by the
32-bit key at position (in+K1) mod (number of 32-bit keys).

• 5<<< 5<<<

13<<<

<<<

<<<S

R

M

L

in

K1

K2

Figure 2.3.: MARS’ E-function

2.4.3. Multiply-With-Carry (MWC)

AMultiply-With-Carry pseudo-random number generator, invented by George Marsaglia1,
is used as a F-function. The inputs are a 32-bit key and the 32-bit plaintext word state.

1The hole USENET-article can be found at http://www.cse.yorku.ca/~oz/marsaglia-rng.html.
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2. Algorithms

It returnes a 32-bit integer calculated as shown in listing 2.1. This pseudo-random num-
ber generator is known to have a period of about 260. The result is then applied to the
other plaintext words via XOR.

1 s t a t e = 36969 ∗ ( s t a t e & 65535) + ( s t a t e >> 16 ) ;
2 key = 18000 ∗ ( key & 65535) + ( key >> 16 ) ;
3 return ( s t a t e << 16) + key ;

Listing 2.1: The MWC function

2.5. Possible Conjunctions

In the previous sections the possible operations are presented. The subject in this section
is, how to put them together. The address permutation and the feistel network work on
their own on the whole plaintext and the block permutation works only on two plaintext
words, so here the question solely is, in wich order to put them.
For the operations from Section 2.2 it is a different problem, as they work with pairs

of plaintext words, with a plaintext and a key word or with a plaintext word and some
other intermediate value.
One way is to do it similar to the algorithm presented in [11]. In this way basically

one plaintext word and one operation is selected and then the operation is performed
with the key as the second operand (see the left graph of Figure 2.4). Another way, is
to pick one operation per plaintext word and use the key and the first plaintext word
as operands for the first operation and for the following operations, one operand is the
corresponding plaintext word and the other is the previous result (see right graph of
Figure 2.4). There are many other possibilities to arrange operations with plaintext
words and key words, and only testing them shows, which is superior.

Figure 2.4.: Conjunction of operations

2.6. KOOS – The Final Algorithm

KOOS is the abbreviation for Key Orientated Operation Selection. The algorithm solely
works on 32-bit integer words: It expects a key of at least one word, so all key sizes with
a multiple of 32-bit are possible. Furthermore the plaintext is expected to be two to

12



eight 32-bit integers, i.e. the block size ranges between 64 bit up to 256 bit. During the
initialisation process the key becomes extended to round ∗key size words and modified,
so that there should be no weak keys. Considering, that the algorithm performs best
with nine rounds (see Chapter 3), this is fixed to be the length of the algorithm.

The following sections explain how and which parameters are taken, how the encryp-
tion and decryption routine work and how the key is extended and modified.

2.6.1. The Parameter

From each 32-bit key word k a set of different parameters are extracted. They are a ad-
dress permutation, one operation per plaintext word, the operands and the permutation
for a block-wise permutation, the F-function for a Feistel network and finally, an order
in which these operations are performed.

The used operations from Section 2.2 are XOR, addition, rotation and negation, in-
dexed by 0 to 3, respectively. Likewise the block-wise permutations and the F-function
are indexed. The addresses for the operands correspond to the index of the 32-bit plain-
text array. The order of these operations are indexed, too. The address permutation is
zero, the operations per plaintext word is one, the feistel network is two and last the
block-wise permutation is three.

Each of these parameters are extracted from the key k via successive modulo opera-
tions and integer divisions. The listing A.1 shows this method in more detail.

Having this in mind, one can determine the number of bits, that are needed, to
calculate each parameter. Assuming the text size is four, this algorithm divides the key
in total by: 4! (address permutation) ∗4 ∗ 3 (block permutation addresses) ∗3 (block
permutation) ∗4! (order of the operations) ∗4∗3∗3∗3 (operations) ∗3 (Feistel function)
= 6718464. This means log2(6718464) ≈ 23 bits are used, but with an text size of eight
it needs log2(8! ∗ 8 ∗ 7 ∗ 3 ∗ 4! ∗ 4 ∗ 3 ∗ 3 ∗ 3 ∗ 3 ∗ 3 ∗ 3 ∗ 3 ∗ 3) ≈ 41 bits of the 32-bit key.
To resolve this problems, in the middle of this algorithm the key becomes rotated to the
right by 7.

2.6.2. Encrypt and Decrypt

With the parameter from the previous section, each 32-bit word of the key creates a
computation graph similar to the one presented in Figure 2.7. Each of these graphs
can be divided into the four parts. One part is the address permutation, another a row
of operations. Then for each plaintext word there is a Feistel network and finally, a
block-wise permutation.
An excample graph is shown in Figure 2.7. Let this graph be created by the 32-bit

word of the key at position i. The parameters, that are extracted from this key at

13



2. Algorithms

position i, are:

Operation order: (Address Permutation, Row of Operations,
Feistel network, Block-wise permutation)

Address permutation: (0 1)(2 3)

Operations: (XOR,Addition,XOR,Rotation)

Feistel function: E − function
Block-wise permutation: perm1 = (0 2 1 3)

The address permutation and the block permutation are performed straight forward
as described in Section 2.3. For the Feistel network, a plaintext word at position j and
the key at position i+ j (modulo the number of 32-bit key words) are used as operands
to the Feistel function, here the E − function. As the E − function needs two keys, it
also gets the key at position i + j + 1. This is done for each word of the plaintext one
after another. Regarding the row of operation, the first operation is performed with the
key at position i and the plaintext word at position 0, if i is even, and accordingly the
word at the last position, if i is odd, as operands. The following operations use their
corresponding plaintext at position j – in ascending order, if i is even or in descending
order, if i is odd – as its first operand and as its second the result of the multiplication
(see Section 2.2.5) of the previous result and the key at position i+ 3 ∗ (j − 1).
As shown previously, each of the operations are reversable, so the decryption proceeds

in reverse order. The listings A.2 and A.3 in the Appendix show these algorithms.

2.6.3. Key Extension

The key extension process is divided into three parts. First, the key becomes extended
by a certain number of self-encryption rounds. Therefore, the key is encrypted by itself
and the resulting cyphertext is appended to the key. In the next round this cyphertext
is encrypted with the key consisting of the original key and the first cyphertext, and
the resulting cyphertext is again appended to the key. So, in each round the key grows
by the size of the original key, until the key reaches the size: round ∗ original key size
bits. The Figure 2.5 illustrates this part further. If the key size and the plaintext
size are not equal, the key is extended to the next multiple of the plaintext size, using
0xAAAAAAAA as padding.
Second, the extended key becomes hashed by a certain number of self-hashing rounds.

In each round the key is partitioned into parts of the size of the original key. Each part is
then encrypted using the extended key. The inverse of the resulting cyphertext is added
to the lower half of this part and to the upper half of the next part – if the current
part is the last part, then the next part referes to the first part. Figure 2.6 pictures this
method in more detail.
Last, the extended and hashed key gets checked for 32-bit words, that do not fit certain

criteria, i.e. that are supposed to perform weak during the encryption process. There
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Figure 2.5.: Key Extension: First Part

are two criteria: Each word has to fulfill the frequency test (3.1.2). Therefore, the total
number of ones or zeros should not fall under nine. The other criteria limits the number
of consecutive 0’s or 1’s to nine. Thus, if a word of the key fails one of these criteria,
the part containing this word becomes encrypted again and the inverse is added to the
original part.
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3. Analysis

The following chapter analyses the previously described encryption algorithm from
Chapter 2. On the one hand, its security is analysed as measured by the random-
ness of its output. To get comparable results the Statistical Test Suite (STS) provided
by the National Institute of Standards and Technology (NIST) is used. [8]
On the other hand, the performance and the used resources on different architectures

are compared.

3.1. Statistical Test Suite

The standardization process of the Advanced Encryption Standard (AES) analyses the
security of each candidate algorithm. Therefore the STS evaluates the randomness of
several sets of data each candidate has to generate. A short description of these sets can
be found in Section 3.1.1.
In order to evaluate the randomness of one set of data, the STS performs 15 different

and in most cases independant tests that concentrates on one aspect of randomness. A
short description of each test can be found in Section 3.1.2.
After these two sections the findings of the encryption algorithm from Chapter 2 are

presented.

3.1.1. Sets of Data

These are the sets of data the NIST used to analyse the candidates for the AES [6, 10].
Each set of data should provide a good insight in how well an encryption algorithm deals
with one specific situation.

Key Avalanche

The Key Avalanche dataset shows how well the encryption algorithm deals with small
changes in the key. Therefore, a plaintext of all zero is encrypted with a random key.
Then each bit in the key is flipped one after another and again a plaintext with all zero
is encrypted with each of these modified keys. The changes between the cyphertext from
the original key and the cyphertexts from the modified keys are the provided data.

Plaintext Avalanche

The Plaintext Avalanche dataset shows how well the encryption algorithm deals with
small changes in the plaintext. Therefor a random plaintext is encrypted with a key of
all zero. Then each bit in the plaintext is flipped one after another and each of these



modified plaintexts become encrypted with a key of all zero. The changes between the
cyphertext from the original plaintext and the cyphertexts from the modified plaintexts
are the provided data.

Plaintext / Cyphertext Correlation

This set of data serves to analyse the correlation between the plaintext and its corre-
sponding cyphertext. A big random plaintext becomes encrypted in electronic codebook
mode [3] with a random key. The differences between plaintext and cyphertext – the
correlation – are the provided data.

CBC Mode

Analysing this set of data shows whether the encryption algorithm is suitable for the
cipher-block chaining mode [3]. Therefore, a big plaintext of all zero with an initialization
vector of all zero becomes encrypted in CBC mode with a random key.

Random Plaintext and Key

Providing a big random plaintext and a random key this set of data serves to analyse,
whether the resulting cyphertext is random too.

Low / High Density Key

This set of data serves to analyse how the encryption algorithm behaves with a low and
accordingly high density key. A random plaintext is first encrypted with a key with all
zero (all one), then the plaintext is encrypted with all keys having only one one (one
zero) and last the plaintext is encrypted with all keys having only two ones (two zeros).

Low / High Density Plaintext

This set of data serves to analyse how the encryption algorithm behaves with a low and
accordingly high density plaintext. A random key is used to first encrypte a plaintext
with all zero (all one), then to encrypt all plaintexts having only one one (one zero) and
last to encrypt all plaintexts having only two ones (two zeros).

3.1.2. STS Tests

The Statistical Test Suite takes a set of data and interprets it as several sequences, each
in the magnitude of one million bits. One set of data consists of 128 to 300 of these
sequences. Each test calculates a P-value for every sequence to decide whether to accept
or to reject that sequence, in other words to decide whether this sequence seems to have
a random distribution of zeros and ones. In the case of the AES standardization process
the significance level α is 0.01, i.e. the P-value of a sequence has to be greater than α
to be accepted. Otherwise the sequence is rejected.

19



3. Analysis

There are two methods to analyse, if the whole set of data passes a test: On the one
hand, there is a proportion of sequences passing the test. If this proportion is outside

the interval p± 3 ∗
√

p(1−p)
m

, where p = 1−α and m is the number of sequences [8], then
there is evidence that the set of data is not random.
On the other hand, there is a distribution of P-values that can be inspected: They

should be equally distibuted, too. So a P-value of all P-values is provided—P-valueT .
The P-valueT should be greater or equal 0.0001 . [8]

Frequency (Monobit) Test

The proportion of zeros and ones in the entire sequence is calculated and the tests
assesses the closeness of the proportion of ones to 0.5. Small P-value indicate, that
there are too many zeros or too many ones in the sequence.

Frequency Test within a Block

This test partitions the sequence into M-bit long blocks and tests if the proportion of
ones in each block is about 0.5. If the P-value is too small, then in at least one block
there is a large deviation from equal proportion of ones and zeros.

Runs Test

The Runs Test calculates the number of runs of various lengths in a sequence. A run is
a not interrupted series of identical bits framed by at least one bit of the opposite value.
Too small P-values indicate, that the oscillation between ones and zeros is either too
fast or too slow.

Longest Run of Ones in a Block

Again the sequence is partitioned into M-bit blocks. For each block the length of the
longest run (see Runs Test 3.1.2) of ones is determined and checked whether this length
can be expected in a random sequence. As the sequence previously has to pass the
monobit test an irregularity in the length of the longest run of ones implies that there
is also a irregularity in the length of the longest run of zeros. P-values smaller than α
indicate big cluster of ones and zeros.

Matrix Rank Test

The sequence is partitioned into M ∗Q-bit blocks, where M is the number of rows and
Q is the number of columns. Each block is transformed into a MxQ matrix and its
binary rank is computed. If the rank distribution differ too much from the expected
distribution of a random sequence, the P-value becomes small.
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Fourier Transform Test

In this test the Discrete Fourier Transform is performed on the sequence and peak heights
are analysed. The purpose is to detect repetitive patterns that are near to each other
in the sequence. If so, the sequence is considered to be not random and the P-value is
small.

Non-overlapping Template Matching Test

The focus of this test is to count the number of occurrences of predefined m-bit pattern
in the sequence and to decide whether this number corresponds to the expected number
of pattern in a random sequence. A m-bit window slides over the sequence and searches
for a pattern. If the pattern is not found, the window moves one bit further. If the
pattern is found, the window is set right after the found pattern. This test is repeated
several times for different pattern.

Overlapping Template Matching Test

The focus of this test is to count the number of occurrences of predefined m-bit pattern
in the sequence and to decide whether this number corresponds to the expected number
of pattern in a random sequence. The differnce to the non-overlapping test is, that if
the pattern is found, the window slides only one bit and resumes the search.

Maurer’s “Universal Statistical” Test

The purpose of this test is to check, if the sequence is significantly compressible without
loss of information. If so, the sequence is considered to be not random and the P-value
is small.

Linear Complexity Test

The test calculates the length of a linear feedback shift register (LFSR) to determine
whether the sequence is complex enough to be considered random. Random sequences
are characterized by longer LFSRs, so too small P-value indicate too short LFSR.

Serial Test

This test determines the frequency of all overlapping m-bit pattern and assesses, if each
pattern occures approximately equally often. For m = 1, this test is the same as the
Monobit Test.

Approximate Entropy Test

This test compares the frequency of all overlapping m-bit and (m+1)-bit pattern in the
sequence against the expected frequency in a random sequence.
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3. Analysis

Cumulative Sums Test

The sequence is interpreted as a random walk, where 1 is interpreted as +1 and 0
is interpreted as −1. The sums for increasing lengths of the random walk / of the
partial sequences are calculated and the maximal excursion from zero is compared to
the expected results for a random sequence. For a random sequence the excursion of the
random walk should be near zero. The random walk is done twice: From the beginning
to the end of the sequence and from the end to the beginning.

Random Excursion Test

Again the sequence is interpreted as a random walk and divided into cycles at positions
where the random walk / the cumulative sum is zero. For the states -4, -3, -2, -1, 1, 2, 3
and 4 the number of occurences in each cycle is calulated and compared to the expected
results of a random sequence.

Random Excursion Variant Test

Again the sequence is interpreted as a random walk. The total number of occurences
of the states -9, -8,. . . ,-1 and 1, 2,. . . , 9 are calculated and compared to the expected
results of a random sequence.

3.1.3. Results

Here the results of the Statistical Test Suite (STS) are presented. The sets of data are
generated multiple times, each with another number of rounds the encryption algorithm
has to run – from 1 round to 14 rounds. More rounds are possible, but there are two
reasons, why I stick to a maximum of 14 rounds. Looking at the charts, there is no trend
visible, that more rounds do improve the statistical randomness of the results. The other
reason regards the performance of the algorithm: More rounds reduce the speed of the
algorithm so far, that it is no more applicable.
To analyse the output of the STS, two types of charts are presented. In the first

chart the number of different, failed tests are compared to the number of rounds, e.g.
Figure 3.1. In the optimal case, no test should fail. The second chart shows, for a
certain number of rounds, for every test the propotion of successful sequences (the blue
rhombs) and a red line representing the minimum propotion (see Appendix A.3). This
minimum propotion is calculated and dependent on the number of sequences (see Section
3.1.2) and as the tests Random Excursion and Random Excursion Variant do not use
all provided sequences in all tests, a gap arises in the line. This chart can be interpreted
as follows: Every rhomb above the line is a successful test and every rhomb below the
line is a failed test.
All in all 188 tests per set of data are executed: 148 Non-overlapping Template Match-

ing Test, 18 Random Excursion Variant Tests, 8 Random Excursion Tests, 2 Cumulative
Sums Tests, 2 Serial Test and one for each of the rest ten kinds of tests. In the following
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charts, one kind of test is considered as failed, if at least one execution of this kind of
test fails.
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Figure 3.1.: High and Low Density Key and Plaintext

The charts in Figure 3.1 show, how well the algorithm performs with high density and
low density keys and plaintext. It performes slightly better with high density keys than
with low density ones. I believe this is, because of the operations being extracted from
the key by modulo operations, a key with more 1’s – especially in the most significant bits
– can result in a better computation graph. This shows, that the current key extension
method is not satisfying. It should, whatever key is given, return equally strong extended
keys.

On low or high density plaintexts the encryption algorithm again performs slightly
better with high desity plaintexts than with low density ones. In both cases the key
is a random one, so the computation graph should be approximately equally good, but
obviously plaintexts with many 1’s become better encryption results.

The tests, that failed are mostly Non-overlapping Template Matching Tests – nearly in
all tested datasets, if a test fails, it is most likely at least one Non-overlapping Template
Matching Test – and a very few other like Random Excursion, Random Excursion Vari-
ant. This is an observation, that throughout all tested datasets can be found. Currently
the encryption algorithm makes heavy use of the key as input to the computation graph:
Multiple keys are used for the row of operations and in almost the same manner multiple
keys are used for the Feistel network. This may be a reason for too many patterns in the
resulting cyphertexts. To avoid the multiple usage of keys, the row of operations and the
Feistel functions have to be re-engineered: Maybe a new conjunction of the operations
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3. Analysis

in the row and less key usage in the E-function does the trick.
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Figure 3.2.: Key and Plaintext Avalange

The results for the key avalange and plaintext avalange in Figure 3.2 show quit good
performance. At the maximum two tests fail, but mostly it is the Non-overlapping
Template Matching Test, again. The dataset key avalange performs a little worse than
the plaintext avalange – this is once again an indicator for a not entirely satisfying key
extension method.
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Figure 3.3.: Random Plaintext and Key and Plaintext / Cyphertext Correlation

The same goes for the results of the datasets random plaintext and key and plaintext /
cyphertext correlation in Figure 3.3: At most two tests fail, but mostly it is only the Non-
overlapping Template Matching Test. This is a little surprising for the dataset random
plaintext and key, hence the data on its own passes all tests – the used random number
generator is the Blum-Blum-Shub generator (BBS), like in the standardisation process.
In other words, the encryption algorithm produces, even though the data comes from a
random source, some pattern much too frequently. Looking at the charts in Figure A.8,
there is no pattern in which Non-overlapping Template Matching Test fail. This, again,
may signifies a too frequent use of the key.
The CBC Mode results, shown in Figure 3.4, are the best results all over the tested

datasets. Most of the times all tests are passed and all the rest of the times only one
test fails, with one exception at six rounds. Apparently, the special structure from the
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Figure 3.4.: CBC Mode

CBC Mode prevents too many template matchings in the cyphertext, but nevertheless
mostly the Non-overlapping Template Matching Test fails.

The table 3.1 merges the results and differentiates in how many datasets a specific
test fails at a fixed number of rounds the encryption algorithm has to run. As expected,
this show that the encryption algorithm has most problems with the Non-overlapping
Template Matching Test (NonOverl), followed by the Random Excursion Variant and
the Random Excursion Tests and then a few other. On the other hand there are always
about the same number of test failing in each round. From in total thirteen failed
tests, down to five failed tests with nine rounds. This concludes, that the results are
about equally stronge, i.e. equally random, whatever number of rounds the encryption
algorithm runs. This conclusion corresponds to the appearance of the charts: There is
always some up and down for the number of failed tests, but the trend stayes the same.

Having a closer look at the other type of charts in the Appendix A.3 you can see,
although some of the tests fail, it is never a total failure. The failed tests often are just
below that red line, i.e. mostly just about one to three sequence to much fail. And even
if Non-overlapping Template Matching Tests fail, there are not many tests that fail – at
most about five out of the 148 individual tests – and there exists no recognizable pattern
among the failing tests.

All together there are two remarkable problems to this algorithm. First, to eliminate
the the number of failed tests. One idea therefore, is to reduce the number of multiple
key usages. Second, to enhance the key extension algorithm. After all, this is responsible
for how well the computation graph is constructed. Experimenting with other operations
can lead to improved performance, too.

3.2. Performance

Here the average performance of different parts of the algorithm, as described in Chapter
2, are meassured. To get a satisfying overview, the algorithm is performed on different
processor architectures and with different number of rounds.

The following numbers represent a kind of lower bound for the performance of this
algorithm, hence its implementation is not focused on performance, but on easy and fast
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3. Analysis

adaption on new ideas (which occured frequently during the development).

MacOS X 10.6 with 2.4 GHz Intel Core i5
Rounds Encryption Speed Decryption Speed Key Extension

1 ∼ 59 Mbit/sec ∼ 59 Mbit/sec ∼ 0.00006 sec/extension
5 ∼ 11 Mbit/sec ∼ 12 Mbit/sec ∼ 0.00074 sec/extension
9 ∼ 6 Mbit/sec ∼ 6 Mbit/sec ∼ 0.00226 sec/extension
10 ∼ 6 Mbit/sec ∼ 5 Mbit/sec ∼ 0.0028 sec/extension
15 ∼ 4 Mbit/sec ∼ 4 Mbit/sec ∼ 0.00604 sec/extension

Linux, CENTOS 5.5 with 2,3 GHz AMD Opteron 8356 (Barcelona)
Rounds Encryption Speed Decryption Speed Key Extension

1 ∼ 92 Mbit/sec ∼ 80 Mbit/sec ∼ 0.00004 sec/extension
5 ∼ 18 Mbit/sec ∼ 18 Mbit/sec ∼ 0.0005 sec/extension
9 ∼ 9 Mbit/sec ∼ 9 Mbit/sec ∼ 0.00154 sec/extension
10 ∼ 8 Mbit/sec ∼ 8 Mbit/sec ∼ 0.00192 sec/extension
15 ∼ 6 Mbit/sec ∼ 6 Mbit/sec ∼ 0.00418 sec/extension

Linux, CENTOS 5.5 with 2,93 GHz Intel Nehalem-EP
Rounds Encryption Speed Decryption Speed Key Extension

1 ∼ 145 Mbit/sec ∼ 145 Mbit/sec ∼ 0.00002 sec/extension
5 ∼ 31 Mbit/sec ∼ 30 Mbit/sec ∼ 0.0003 sec/extension
9 ∼ 15 Mbit/sec ∼ 15 Mbit/sec ∼ 0.00094 sec/extension
10 ∼ 13 Mbit/sec ∼ 13 Mbit/sec ∼ 0.00112 sec/extension
15 ∼ 9 Mbit/sec ∼ 9 Mbit/sec ∼ 0.00242 sec/extension
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Rounds NonOverl RandExVar RandEx Other Sum
1 6 1 7
2 7 7
3 6 Serial 7
4 8 4 12
5 6 2 Longest Runs 9
6 6 3 1 10
7 8 3 Approx. Entr. 12
8 8 8
9 3 1 1 5

10 8 1 Universal, Freq,
CumSum, Overlapping 13

11 5 1 2 Block Freq. 9
12 7 1 Serial, Run 10
13 8 3 1 LinCompl 13
14 6 1 FFT, Longest Runs 9
Sum 92 18 8 13 131

Table 3.1.: Number of datasets, in which a specific test fails.
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4. Conclusion and Further Researches

Here a new encryption algorithm is developed, whose computation graph depends on
the key. The algorithm is analysed with the same methodes as the Advanced Encryption
Algorithm (AES) during its standardisation process. Though the algorithm does not
always fulfill all the tests and especially has a big problem with the Non-overlapping
Template Matching Test. It could be said that it is a secure encryption algorithm, which
introduces new ideas no other official encryption algorithm implements. In addition, the
failing tests always came close to passing.
However, there are still tasks to do. The encryption algorithm has to be enhanced, so

that it finally fulfills all tests from the Statistical Test Suite. In the first place, this means
to fulfill the Non-overlapping Template Matching Tests. Currently the algorithm uses
parts of the key very frequently: for the row of operations and for the Feistel network,
especially with the E-function. This may lead to too many patterns in the resulting
cyphertext. Furthermore the key extension method is not fully satisfying, as keys with
a more dense filling of 1’s perform slightly better than keys with a less dense filling of
1’s.
When this is done, the code has to be optimised. Right now, the code is developed

in a way, that allows fast adoption to new ideas: Other operations, other F-functions,
etc. . Admittedly this leads to slow encryption / decription results with about 6 to 13
Mbit/s. I believe, this can be increased dramatically.
Finally, the algorithm has to be analysed with different key lengths. Here, solely

128-bit keys are tested, but to pass the second round of the standardisation process,
key lengths of at least 192-bit and 256-bit should be tested. Partial round testings have
already been performed in here and show, that the algorithm is approximately equally
strong already in one round.



A. Appendix

A.1. Extract Parameter

Let Row be a data structure containing the parameter extracted from one 32-bit key
word k. The function createPermutation() creates a permutation of the StextSize from the
first parameter.

1 // c a l c u l a t e the permutation , t h e r e are t e x t S i z e ! many
2 row . addrPerm = createPermutat ion(&k , t e x tS i z e ) ;
3
4 // b lock−wise permutat ion operand 1 and 2
5 row . paddr1 = k % tex tS i z e ;
6 k /= t ex tS i z e ;
7 row . paddr2 = k % ( textS i z e −1);
8 k /= ( tex tS i z e −1);
9 // they must not be the same

10 i f ( row . paddr2 >= row . paddr1 ) ++row . paddr2 ;
11
12 // s e l e c t b lock−wise permutat ion
13 row . perm = k % NUM_OF_PERM;
14 k /= NUM_OF_PERM;
15
16 // r i g h t r o t a t i on by 7
17 k = RROTATION(k , 7 ) ;
18 // the order o f the opera t i ons
19 r e t . opOrder = createPermutat ion(&x , 4 ) ;
20 // s e l e c t f i r s t opera t ion
21 row . ops [ 0 ] = k % NUMBER_OF_OPERATION;
22 k /= NUMBER_OF_OPERATION;
23 for ( i = 1 ; i < nTB; ++i ) {
24 // s e l e c t o ther opera t i ons
25 row . ops [ i ] = k % (NUMBER_OF_OPERATION−1);
26 k /= (NUMBER_OF_OPERATION−1);
27 // wi th none the same as i t s p redeces sor
28 i f ( row . ops [ i ] >= row . ops [ i −1]) ++(row . ops [ i ] ) ;
29 }
30 // F−f unc t i on f o r f e i s t e l network
31 row . f e i s t e lOp = k % FEISTEL_OPS;

Listing A.1: Extract parameters



A. Appendix

A.2. Encryption and Decryption

LetKoos be a data structure containing the key size, the text size, the number of rounds,
an array with all parameters called rows (see Section A.1). The function permutateS8()
permutates the second parameter with the permutation given with the first parame-
ter. The array operators contains the function pointer to the corresponding operations.
The array inverseOperators contains the function pointers to the corresponding inverse
operations.

1 void encryptRow ( const Koos ∗ s , uint32_t ∗ t ex t )
2 {
3 int32_t i , j , k ;
4 uint32_t prev , ∗tmp , currKey ;
5 Row ∗ r ;
6
7 tmp = copyArray ( text , s−>tex tS i z e ) ;
8 // f o r each row
9 for ( j = 0 ; ( uint32_t ) j < s−>rowSize ; ++j )

10 {
11 // curren t row
12 r = &s−>rows [ j ] ;
13
14 for ( k = 0 ; k < 4 ; ++k) {
15 switch ( permutateS8 ( r−>opOrder , k ) ) {
16 case ADDRESS_PERMUTATION:
17 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
18 text [ i ] = tmp [ i ] ;
19 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
20 tmp [ i ] = text [ permutateS8 ( r−>addrPerm , i ) ] ;
21 break ;
22
23 case ROW_OF_OPERATION:
24 i f ( ( j % 2) == 0) { // even rounds
25 prev = s−>key [ j ] ;
26 // f o r each t e x t b l o c k => opera t ion
27 for ( i = 0 ; i < s−>tex tS i z e ; ++i ) {
28 currKey = s−>key [ ( j+3∗ i )%s−>keySize ] ;
29 tmp [ i ] = ope ra to r s [ r−>ops [ i ] ] ( prev , tmp [ i ] ) ;
30 prev = multOp( currKey , tmp [ i ] ) ;
31 }
32 } else { // odd rounds
33 prev = s−>key [ ( j +3∗(s−>textS i z e −2))%s−>keySize ] ;
34 // f o r each t e x t b l o c k => opera t ion
35 for ( i = s−>tex tS i z e − 1 ; i >= 0 ; −− i ) {
36 currKey = s−>key [ ( j+3∗ i )%s−>keySize ] ;
37 tmp [ i ] = ope ra to r s [ r−>ops [ i ] ] ( prev , tmp [ i ] ) ;
38 prev = multOp( currKey , tmp [ i ] ) ;
39 }
40 }
41 break ;
42
43 case FEISTEL_NETWORK:
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44 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
45 lawine ( s , tmp , i , r−>fe i s t e lOp , ( j+i )%s−>rowSize ) ;
46 break ;
47
48 case BLOCKWISE_PERMUTATION:
49 // two by t e permutat ion on the
50 // four b y t e s o f r−>paddr1 and r−>paddr2
51 permutate(&tmp [ r−>paddr1 ] , &tmp [ r−>paddr2 ] , r−>perm ) ;
52 break ;
53
54 default :
55 break ;
56 }
57 }
58
59 // wr i t e r e s u l t s
60 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
61 text [ i ] = tmp [ i ] ;
62 }
63 FREE(tmp ) ;
64 }

Listing A.2: Encryption

1 void decryptRow ( const Koos ∗ s , uint32_t ∗ cypher )
2 {
3 int32_t j , i , k ;
4 uint32_t prev , currKey , ∗tmp ;
5 Row ∗ r ;
6
7 tmp = copyArray ( cypher , s−>tex tS i z e ) ;
8 // f o r each row from bottom to top
9 for ( j = s−>rowSize − 1 ; j >= 0 ; −−j )

10 {
11 r = &s−>rows [ j ] ; // curren t row
12
13 for ( k = 3 ; k >= 0 ; −−k ) {
14 switch ( permutateS8 ( r−>opOrder , k ) ) {
15 case BLOCKWISE_PERMUTATION:
16 // inv e r s e two by t e permutat ion on the
17 // four b y t e s o f r−>paddr1 and r−>paddr2
18 permutateInv(&tmp [ r−>paddr1 ] , &tmp [ r−>paddr2 ] , r−>perm ) ;
19 break ;
20
21 case FEISTEL_NETWORK:
22 for ( i = s−>textS i z e −1; i >= 0 ; −− i )
23 lawineInv ( s , tmp , i , r−>fe i s t e lOp , ( j+i )%s−>rowSize ) ;
24 break ;
25
26 case ROW_OF_OPERATION:
27 i f ( ( j % 2) == 0) { // even rounds
28 prev = s−>key [ j ] ;
29 // f o r each t e x t b l o c k => inv−opera t ion
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30 // and wr i t e to inv−perm−address
31 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
32 {
33 currKey = s−>key [ ( j+3∗ i )%s−>keySize ] ;
34 cypher [ i ] = inve r s eOpera to r s [ r−>ops [ i ] ] ( prev , tmp [ i ] ) ;
35 prev = multOp( currKey , tmp [ i ] ) ;
36 tmp [ i ] = cypher [ i ] ;
37 }
38 } else { // odd rounds
39 prev = s−>key [ ( j +3∗(s−>textS i z e −2))%s−>keySize ] ;
40 // f o r each t e x t b l o c k => inv−opera t ion
41 // and wr i t e to inv−perm−address
42 for ( i = s−>tex tS i z e − 1 ; i >= 0 ; −− i )
43 {
44 currKey = s−>key [ ( j+3∗ i )%s−>keySize ] ;
45 cypher [ i ] = inve r s eOpera to r s [ r−>ops [ i ] ] ( prev , tmp [ i ] ) ;
46 prev = multOp( currKey , tmp [ i ] ) ;
47 tmp [ i ] = cypher [ i ] ;
48 }
49 }
50 break ;
51
52 case ADDRESS_PERMUTATION:
53 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
54 cypher [ permutateS8 ( r−>addrPerm , i ) ] = tmp [ i ] ;
55 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
56 tmp [ i ] = cypher [ i ] ;
57 break ;
58 default :
59 break ;
60 }
61 }
62 }
63 // wr i t e r e s u l t s
64 for ( i = 0 ; i < s−>tex tS i z e ; ++i )
65 cypher [ i ] = tmp [ i ] ;
66 FREE(tmp ) ;
67 }

Listing A.3: Decryption
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A.3. Detailed Analysis Charts

This second type of chart shows, for a certain number of rounds, for every test the propo-
tion of successful sequences (the blue rhombs) and a red line representing the minimum
propotion. This minimum propotion is calculated and dependent on the number of se-
quences (see Section 3.1.2) and as the tests Random Excursion and Random Excursion
Variant do not use all provided sequences in all tests, a gap arises in the line. This chart
can be interpreted as follows: Every rhomb above the line is a successful test and every
rhomb below the line is a failed test.
The order of the rhombs matches the order of the tests in the resulting file from

the STS: Frequency, Block Frequency, two times Cumulative Sums, Runs, Longest
Run, Rank, FFT, 148 times Non-overlapping Template Matching, Overlapping Tem-
plate Matching, Universal, Approximate Entropy, eight times Random Excursions, 18
times Random Excursions Variant, two times Serial and finally, Linear Complexity.
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Figure A.1.: High Density Key: detailed results
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Figure A.2.: High Density Plaintext: detailed results
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Figure A.3.: Low Density Key: detailed results
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Figure A.4.: Low Density Plaintext: detailed results
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Figure A.5.: Key Avalange: detailed results
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Figure A.6.: Plaintext Avalange: detailed results
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Figure A.7.: CBC Mode: detailed results
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Figure A.8.: Random Plaintext / Cyphertext: detailed results

41



Bibliography

[1] Information Technology Laboratory (National Institute of Stan-
dards and Technology): Announcing the ADVANCED ENCRYPTION
STANDARD (AES). Gaithersburg, MD 20899-8930, November 2001. – Techni-
cal Report. – Federal Information Processing Standards Publication 197

[2] Anderson, Ross ; Biham, Eli ; Knudsen, Lars: Serpent: A Flexible Block
Cipher With Maximum Assurance. In: In The First Advanced Encryption Standard
Candidate Conference, 1998

[3] Buchmann, Johannes A.: Introduction to Cryptography. Springer-Verlag New
York, Inc., 2000

[4] Carolynn Burwick, Edward D’Avignon Rosario Gennaro Shai Halevi Charanjit
Jutla Stephen M. Matyas Jr. Luke O’Connor Mohammad Peyravian David Safford
Nevenko Z. Don Coppersmith C. Don Coppersmith: MARS - a candidate cipher
for AES, 1999

[5] Contini, Scott ; Yin, Yiqun L.: On differential properties of data-dependent
rotations and their use in MARS and RC6 (Extended Abstract). In: Proceedings
of The Second AES Candidate Conference, S. 230–239

[6] Juan Soto, Jr.: Randomness Testing of the Advanced Encryption Standard Can-
didate Algorithms. In: NIST IR 6390, National Institute of Standards and Tech-
nology. Gaithersburg, MD 20899-8930, September 1999

[7] Rivest, Ronald L. ; Robshaw, M. J. B. ; Sidney, R. ; Yin, Y. L.: The RC6
TM Block Cipher. In: Tn First Advanced Encryption Standard (AES) Conference,
1998

[8] Rukhin, Andrew ; Soto, Juan ; Nechvatal, James ; Smid, Miles ; Barker,
Elaine ; Leigh, Stefan ; Levenson, Mark ; Vangel, Mark ; Banks, David ;
Heckert, Alan ; Dray, James ; Vo, San: A Statistical Test Suite for Ran-
dom and Pseudorandom Number Generators for Cryptographic Applications / Na-
tional Institute of Standards and Technology. Version:April 2010. http://csrc.
nist.gov/groups/ST/toolkit/rng/documentation_software.html. Gaithers-
burg, MD 20899-8930, April 2010. – Technical Report. – Special Publication 800-22,
Revision 1a

[9] Schneier, Bruce ; Kelsey, John ; Whiting, Doug ; Wagner, David ; Hall,
Chris ; Ferguson, Niels: Twofish: A 128-Bit Block Cipher. In: In First Advanced
Encryption Standard (AES) Conference, 1998

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html


Bibliography

[10] Soto, Juan ; Bassham, Lawrence: Randomness Testing of the Advanced En-
cryption Standard Finalist Candidates. In: NIST IR 6483, National Institute of
Standards and Technology. Gaithersburg, MD 20899-8930, March 2000

[11] Tönnis, Andreas: Implementierung und Analyse eines Verschlüsselungsverfahrens
mit schlüsselgesteuerter Operationsauswahl, RWTH Aachen, Bachelorthesis, April
2010

43



Statement of Authorship

I declare that this document and the accompanying code has been composed by myself,
and describes my own work, unless otherwise acknowledged in the text. It has not
been accepted in any previous application for a degree. All verbatim extracts have been
distinguished by quotation marks, and all sources of information have been specifically
acknowledged.

Aachen, March 27, 2011,

Tammo Ippen


	Introduction
	State of the Art

	Algorithms
	Design Space
	Operations
	Addition
	XOR
	Rotation
	Negation
	Multiplication

	Permutation
	Address Permutation
	Block Permutation

	Feistel Network
	F-Box
	E-Function
	Multiply-With-Carry (MWC)

	Possible Conjunctions
	KOOS – The Final Algorithm
	The Parameter
	Encrypt and Decrypt
	Key Extension


	Analysis
	Statistical Test Suite
	Sets of Data
	STS Tests
	Results

	Performance

	Conclusion and Further Researches
	Appendix
	Extract Parameter
	Encryption and Decryption
	Detailed Analysis Charts


