Rheinisch-Westfalische Technische Hochschule Aachen

Lehrstuhl fiir Informatik 1 Algorithmen & Komplexitét
PD Dr. Walter Unger

BACHELOR THESIS

Security Aspects And Performance Of
A Production Ready Encryption
System with Key Generated Operation
Selection

Tammo Ippen
Matrikelnr. 281214

March 2011

Supervisor: PD Dr. Walter Unger

Second Lecturer: Prof. Dr. Ulrike Meyer

mailto:tammo.ippen@gmx.de

Abstract

Comparing encryption algorithms at an abstract level, they all have a well designed,
but fixed computation graph and they use the key and the plaintext data solely as
input to this graph. This paper introduces a new idea to make the computation graph
dependent from the key, in other words two different input keys lead to two different
encryption algorithm or computation graphs.

Contents

(1. Introduction

[2. Algorithms|
[2.1. Design Space|
[2.2. Operations|.

21 Additionl

[2.2.4. Negation|.
[2.2.5. Multiplication| oo
2.3. Permutationl

[2.4.3. Multiply-With-Carry (MWC)|
[2.5. Possible Conjunctions|. L.

[2.6.2. Encrypt and Decrypt|
[2.6.3. Key Extension| 0L

|A. Appendix|

[A.2. Encryption and Decryption|,
[A.3. Detailed Analysis Charts|

o O

ENEESEEN BEN

1. Introduction

A new kind of symmetric encryption algorithm is developed. A symmetric encryption
algorithm uses one secret key to encrypt and decrypt data or messages. They are the first
developed cryptographic algorithms, starting with hieroglyphics and Atbash. Today,
they are of fundamental importance when it comes to secret or private information
excange in a private, business, political or military environment. They are designed to
be fast and unbreakable — an attempt to break it should at least last several decades or
centuries.

The current industry standard is the Rijndael cypher, better known as Advanced
Encryption Standard (AES) [1]. This encryption algorithm won over 14 other candidates
during the standardisation process in October 2000.

During the standardisation process, four additional encryption algorithms were an-
nounced to be finalists — MARS, RC6, Serpent and Twofish. They all succeeded in the
first round of the process and are meant to be equally strong compared to Rijndael [10].
A short description of these cyphers follows in Section

Comparing these encryption algorithms at an abstract level, they all have a well
designed, but fixed computation graph and they use the key and the plaintext data solely
as input to this graph. This paper introduces a new idea to make the computation graph
dependent from the key, in other words two different input keys lead to two different
encryption algorithm or computation graphs.

There exist good reasons why one should develop new, improved encryption algo-
rithms. On the one hand, not all of the current encryption algorithms are free of suspi-
cious behavior, such that vulnerability attacks are possible or that the algorithm even
contains some kind of backdoor. For example, the former encryption standard DES had
suspicious security holes in the form of a backdoor regarding its S-boxes and the current
standard can be specified by a continuous fraction, which might be a hook for an efficient
attack. Strengthening the confidence in the encryption algorithm is crucial, if you want
the algorithm to be used.

On the other hand, computation power increased rapidly over the past years and it
is very likely, that computation power increases further in the next years. The security
margin of 128-bit / 192-bit / 256-bit keys might be just as secure in the future, as the
56-bit key margin of DES is now. So easy adoption to new security margins is essential,
if the algorithm is to be used for a long time.

The ambitions for this encryption algorithm are, that it is at least as secure as the five
AES finalists and that it is fast enough and easy enough to implement, to be actually used
in future applications. Furthermore it should be easy and not limited, to increase the
security of the algorithm, if more security is needed. To achieve these, the AES finalists
get carefully examined and cryptographic strong operations are identified. From these

1. Introduction

a set of operations is selected. Their order, arrangement and their operands, i.e. the
computation graph, then are determined by the key. The key length itself is not limited
and should be solely deciding for the length of the computation graph, just as for the
encryption strength.

During the development, many different approaches are tried and analyzed. The first
attempt is made in the bachelor thesis [I1] and is taken as is as a reference to the
algorithm that is developed here. Many others followed, changing the set of operations
and the way the parameters, like the order, the arrangement and the operands, are
determined. The one, that is presented, passes the most tests from the Statistical Test
Suite, but since not all tests pass all the time, further researches have to be done.

This bachelor thesis can be partitioned into three main parts. The first part gives an
overview over the design space for encryption algorithms. It starts with small parts, like
which operations are useful at all, and finishes with the final, fully functional encryption
algorithm — Key Orientated Operation Selection (KOOS).

After that, the analysis of this algorithm is presented. One the one hand with the
tools used to analyse the AES candidates. The testsuite itself and the analysed sets of
data are explained, too. On the other hand the performance of the algorithm is tested
and analysed.

Finally, the findings and conclusions are summarised and further research has to be
done.

1.1. State of the Art

The five encryption algorithms, that were announced as finalists of the AES standardi-
sation process, can be seen as the State of the Art of symmetric encryption algorithms.
All these are unbroken and frequently used in miscellaneous applications.

The AES winner, the Rijndael cypher, consists of four functions to manipulate the
data, also referred to as state. The state is arranged as a matrix with four bytes in each
row and column. The four functions are repeated several times one after another — one
to substitute bytes, one to shift rows, one to mix columns and the last one to add the
round key. [1]

MARS is a very symmetric cypher, consistiong of six parts: First, parts of the key
are added to the plaintext, then eight rounds of unkeyed forward mixing with heavy use
of S-boxes are performed. The third and fourth part are eight rounds of keyed forward
and backward transformations, respectively, with the aid of the E-function. In the end
there are eight rounds of unkeyed backwards mixing with the S-boxes again and parts
of the key become substracted from the current state of the plaintext. [4]

The RC6 cypher greatly depends on data-dependant rotations. First, some parts
of the key are added to half of the plaintext, then several rounds of data-dependant
rotations, additions and a permutation are performed. Finally, another part of the key
is added to the other half of the plaintext. [7]

The Serpent cypher consists of 32 rounds and in each round first a part of the key is
exclusive or’ed to the current state of the plaintext (key mixing), then reversable S-boxes

change the current state and finally, a linear transformation is applied to the current
state. In the last round this linear transformation is exchanged with another key mixing.
2l

The Twofish cypher performes 16 Feistel-like networkes and before and afterwards it
exclusive or’s some parts of the key to the plaintext. The used Feistel function consists
of bijective, key dependant 8-by-8-bit S-boxes, a MDS matrix and a pseudo-Hadamard
transformation. |9

2. Algorithms

This chapter consists of three parts: First, the idea and the design space is explored. It
shows which operations and methods are useful for encryption algorithms in general and
in particular for the algorithm that is developed here. After that, all used operations are
discussed in detail. As the final encryption algorithm solely works on 32-bit integer
words, the description of the operations in here are limited to their 32-bit version.
Finally, the developed algorithm is presented.

2.1. Design Space

The goal is to develop an encryption algorithm, whose operations, operands and their or-
der are all dependent on the key. There are certain requirements to the operations: They
have to be reversible, they should be fast and they should have a certain cryptographic
strength. There are also requirements to the operands, like the possible operands should
be equally often chosen and successive applications of operands and operations should
not erase their effect, e.g. multiple applications of exclusiv or with the same operands
may lead to small or no differences between the plaintext and the cyphertext. Given
that all these parameters are extracted from the key, the algorithm needs a method that
extract them equally disributed and a method to modify keys that would result in bad
distributed parameters.

Looking at some other encryption algorithms, the set of possible operations becomes
clear. There are simple, reversible and fast operations like XOR, addition and substrac-
tion and at least one of them is used in every encryption algorithm. Mostly, they are
used to mix the key and and the plaintext, like in AES [I]. This is often also called key
whitening. Then there are several kinds of circular shifts or rotations, depending on the
current state of the plaintext and the key as well as static ones. MARS and especially
RC6 frequently use them. [5]

Permutations or P-bozes are another method to shuffle bits, bytes or other chunks of
the current state of the plaintext.

Furthermore, Feistel networks are great methods to distribute changes in one word of
the plaintext to one or all other words. Therefor the word is modified by an F-function
and then, with an easily reversible function like XOR or addition, applied on the other
words.

Finally, many algorithms use table-lookups, so called S-bozes. These S-boxes use
predefined tables to replace some parts of the current state of the plaintext. It is very
hard to create good S-boxes and sometimes these tables have to be reversible, too, e.g.
Serpent uses reversible S-boxes. Though good S-boxes are cryptographic strong, their
principle could lead to the suspicion, the algorithm may has a backdoor. Because of this

and the fact, that the S-boxes in principle does not depend on the key, they are not that
suitable for the encryption algorithm that is developed in here.

2.2. Operations

Here the operations addition, XOR, rotation, negation and multiplication are discussed.
Their functionality and some examples are discribed. All operations get two unsigned
integer k£ and p as input and return one unsigned integer ¢ as output, where p is meant
to be the plaintext and ¢ is meant to be the cyphertext. k may be a key value or some
other intermediate value.

2.2.1. Addition

This is the normal integer addition modulo 232. To encrypt a word, calculate ¢ =
(p + k) mod 232 and to decrypt p = (¢ — k) mod 232. Of course the modulo operation
can be left out, because of the 32-bit unsigned integer. One example:

k = 0x9BD69510, p = 0xED8BA100
c = (0x9BD69510 + 0xEDSBA100) mod 2** = 0x89623610
p = (0x89623610 — 0x9BD69510) mod 2** = 0xEDSBA100

2.2.2. XOR

A bitwise exclusiv or operation is performed on the operands p and k. Hence XOR itself
is its inverse, encryption and decryption are the same.

k = 0x9BD69510, p = 0xEDSBA100
c = 0x9BD69510 XOR 0xEDS8BA100 = 0x765D3410
p = 0x765D3410 XOR 0x9BD69510 = 0xED8BA100

2.2.3. Rotation

A rotation of p to the left is performed. The number of rotations equals the value of the
five most significant bits of the multiplication k* (2xk+1). With this multiplication you
make sure, that the number of rotations depent on all bits in k£ and not just on the five
most significant [5]. This is similar to the way RC6 performes data-dependant-rotations
[7]. To decrypt such a rotation to the left, simply rotate the same number of rotations
to the right.

2. Algorithms

k = 0x9BD69510 , p = 0xEDSBA100

(0x9BD69510 * (2 * 0x9BD69510 + 1)) = 0x76EDD710

The five most significant bits are: 0x76EDD710 > 27 = OxE = 14
¢ = 0xED8BA100 <« 14 = 0xE8403B62
p = 0xE8403B62 >> 14 = 0xED8BA100

2.2.4. Negation

If the operand k is even, then it returns p with all its bits flipped, if not, it returns p
as it is. This is not a very strong operation, because it uses only one bit in one of its
operands and changes — in 50 % of the cases — all bits of the other one, but on a large
scale and assuming the zeros and ones in the k’s are equally and randomly disributed
about 50 % of the bits are changed.

2.2.5. Multiplication

The operands p and k are divided into two 16 bit integer pl, p2, k1 and k2. To encrypt
p each pair k1 and pl, k2 and p2 perform a multiplication modulo the prime number
216 1 1. Hence zero is not a valid value for this primitive residue class and the value 2'¢
is not in the range of a 16 bit integer each of the 16 bit operands become increased by
one before the multiplication takes place and afterwards the results become decreased
by one.

(cl+1) = (k1+1)*(pl+ 1) mod (2'° + 1)
(2+1) = (k2+1) % (p2 + 1) mod (2'° + 1)

To decrypt, the multiplicative inverse of (k1 + 1) and (k2 + 1) must be determined (e.g.
by using Euclid’s algorithm) and after that the multiplication is analog.

k = 0x9BD69510, p = 0xEDSBA100
cl +1 = (0x9BD6 + 1) * (0xEDSB + 1) mod (2'¢ + 1) = (0xB3F9 + 1)
2+ 1= (0x9510 + 1) * (0xA100 + 1) mod (2'° + 1) = (0xE851 + 1)
= ¢ = 0xB3F9ES51

pl 4+ 1= (029BD6 + 1)~' * (0xB3F9 + 1) mod (2'° + 1)
= 0x0F49 * 0xB3FA mod (2'° + 1) = 0xEDSB + 1
p2 41 = (0x9510 + 1)~ % (0xE851 + 1) mod (2'° + 1)
= 0x2D32 * 0xE852 mod (2'° + 1) = 0xA100 + 1
= p = 0xEDSBA100

2.3. Permutation

In the algorithm two types of permutations are performed. One to shuffle the 32-bit
plaintext words and one to shuffle 16-bit words between two plaintext words. The
permutations in this section are all given in cycle notation, i.e. a permutation o =
(2 4)(3 0 1) exchanges 2 and 4, and 3 is transposed to 0, 0 to 1 and 1 to 3.

2.3.1. Address Permutation

The plaintext is partitioned into two to eight 32-bit word. Then a corresponding per-
mutation p of the Sy to Sg is extracted from the key and applied to the order of the
plaintext words. E.g. (a 160 bit plaintext is partitioned into an zero based array of
32-bit words):
p=1(24)(301)
State: (0x9BD69510, 0xED8BA100, 0x12345678, 0x0, OxFFFFFFFF)

Applying the permutation, the state changes as follows:

State: (0x0, 0x9BD69510, OxFFFFFFFF, 0xED8BA100, 0x12345678)

2.3.2. Block Permutation

The permutation shuffels 16-bit blocks of two 32-bit operands a and b via one out of the
three independent permutations of the symmetric group Sy with an order of four. The
permutations are:

perm0 = (03 21) perm0~! = (123 0)
perml = (021 3) perml1™' = (3120)
perm2 = (013 2) perm2 ' =(2310)

Let a = p0 pl and b = p2 p3 be the split-up of a and b. Performing the permutation
perm0 the results are ' = p3 p0 and V' = pl p2, in detail the 16 bits in position zero
(p0) become the 16 bits in position three (p3) and so on.

This permutation can be reversed by using the inverse permutation permX !, respec-
tively.

2.4. Feistel Network

A Feistel Network describes an arrangement, in which one word w of the plaintext
effects one or all other words. Therefor the word w often is modified by an arbitrary,
not necessarily invertible F-function and then applied to the other words via an easily
invertible function, like addition or XOR. An illustration of this arrangement can be

2. Algorithms

viewed in Figure Hence the word w is carried on unchanged, a Feistel Network is
always reversible.

Here three different F-functions are used: An function inspired by the f-box of the
encryption algorithm IDFA, a variation of the E-function of the encryption algorithm
MARS and a simple multiply-with-carry pseudo-random number generator invented by
George Marsaglia.

| word0 | | word1 | | word2 | | word3 | | word0 | | word1 | | word2 | | word3 |

Ffuncion

A
| word0 | | word1' | | word2' | | word3' | | word0 | | word1' | | word2' | | word3' |

Figure 2.1.: Feistel Network: Encryption (left) and decryption (right).

2.4.1. F-Box

As can be seen in Figure 2.2] this F-function needs four input values, as they are P1,
P2, K1 and K2, and returns two output values C'1 and C'2. Each of these values are
16 bit integer. In this version the F-boz gets one 32-bit integer from the current state
of the plaintext P and one 32-bit key K. Then it splits up P and K into P1, P2, K1
and K2, with P1 and K1 contain the most significant bits and P2 and K2 contain
the least significant bits of P and K, respectively. The returned values C'1 and C?2 are
concatenated to one 32-bit output value C' with C'1 as its most significant bits and C'2
as its least significant bits. Finally, C' is applied to the other words with the operation
XOR.

The operation @ is a multiplication modulo the prime number 2'6 + 1. As described
in Section both operands are increased by one before the multiplication and the
result is decreased by one. The operation H is the regular 16 bit integer addition.

2.4.2. E-Function

The E-function is a well designed part of the “cryptographic core” of the MARS encryp-
tion algorithm. The function is illustrated in Figure It gets one 32-bit integer in
from the plaintext and two 32-bit keys K1 and K2 as input and returns three 32-bit
outputs R, M and L. These values are added to the other plaintext words one after

10

Figure 2.2.: IDEA’s f-box

another: the first word plus L, the second plus M, the third plus R and the fourth word
again plus L and so on.

The operations are: The regulare 32-bit multiplication O, the regular 32-bit addition
H, XOR @ and two kinds of rotations — “n <<” is a fixed left-rotation by n and “<&”
is a data-dependent rotation by the value of the five least significant bits of the data.
Unfortunately the original E-function contains an S-boz [S], but in this version the table
of the S-boz is replaced by the key itself, i.e. the value in + K1 is substituted by the
32-bit key at position (in + K1) mod (number of 32-bit keys).

. 5 5 R »

(o)
13¢<< ﬁz
in 1]

:11;]

M >

- 2 S

Figure 2.3.: MARS’ E-function

2.4.3. Multiply-With-Carry (MWC)

A Multiply- With-Carry pseudo-random number generator, invented by George Marsaglia[']
is used as a F-function. The inputs are a 32-bit key and the 32-bit plaintext word state.

!The hole USENET-article can be found at http://www.cse.yorku.ca/~oz/marsaglia-rng.html.

11

http://www.cse.yorku.ca/~oz/marsaglia-rng.html

[\]

2. Algorithms

It returnes a 32-bit integer calculated as shown in listing[2.1] This pseudo-random num-
ber generator is known to have a period of about 2°°. The result is then applied to the
other plaintext words via XOR.

state = 36969 * (state & 65535)
key = 18000 * (key & 65535)
return (state << 16) + key;

(state >> 16);

Jr
+ (key >> 16);

Listing 2.1: The MWC function

2.5. Possible Conjunctions

In the previous sections the possible operations are presented. The subject in this section
is, how to put them together. The address permutation and the feistel network work on
their own on the whole plaintext and the block permutation works only on two plaintext
words, so here the question solely is, in wich order to put them.

For the operations from Section it is a different problem, as they work with pairs
of plaintext words, with a plaintext and a key word or with a plaintext word and some
other intermediate value.

One way is to do it similar to the algorithm presented in [I1]. In this way basically
one plaintext word and one operation is selected and then the operation is performed
with the key as the second operand (see the left graph of Figure . Another way, is
to pick one operation per plaintext word and use the key and the first plaintext word
as operands for the first operation and for the following operations, one operand is the
corresponding plaintext word and the other is the previous result (see right graph of
Figure . There are many other possibilities to arrange operations with plaintext
words and key words, and only testing them shows, which is superior.

I l l l
-0 ET? A |/? |/?

Figure 2.4.: Conjunction of operations

2.6. KOOS - The Final Algorithm

KOOS is the abbreviation for Key Orientated Operation Selection. The algorithm solely
works on 32-bit integer words: It expects a key of at least one word, so all key sizes with
a multiple of 32-bit are possible. Furthermore the plaintext is expected to be two to

12

eight 32-bit integers, i.e. the block size ranges between 64 bit up to 256 bit. During the
initialisation process the key becomes extended to round x key size words and modified,
so that there should be no weak keys. Considering, that the algorithm performs best
with nine rounds (see Chapter , this is fixed to be the length of the algorithm.

The following sections explain how and which parameters are taken, how the encryp-
tion and decryption routine work and how the key is extended and modified.

2.6.1. The Parameter

From each 32-bit key word k a set of different parameters are extracted. They are a ad-
dress permutation, one operation per plaintext word, the operands and the permutation
for a block-wise permutation, the F-function for a Feistel network and finally, an order
in which these operations are performed.

The used operations from Section are XOR, addition, rotation and negation, in-
dexed by 0 to 3, respectively. Likewise the block-wise permutations and the F-function
are indexed. The addresses for the operands correspond to the index of the 32-bit plain-
text array. The order of these operations are indexed, too. The address permutation is
zero, the operations per plaintext word is one, the feistel network is two and last the
block-wise permutation is three.

Each of these parameters are extracted from the key k via successive modulo opera-
tions and integer divisions. The listing shows this method in more detail.

Having this in mind, one can determine the number of bits, that are needed, to
calculate each parameter. Assuming the text size is four, this algorithm divides the key
in total by: 4! (address permutation) %4 % 3 (block permutation addresses) *3 (block
permutation) 4! (order of the operations) x4 %3 %3 %3 (operations) *3 (Feistel function)
= 6718464. This means logs(6718464) ~ 23 bits are used, but with an text size of eight
it needs logy (8! * 8 % Tx 3«4l x4 % 3% 3% 3% 3% 3% 3% 3 x3) ~ 41 bits of the 32-bit key.
To resolve this problems, in the middle of this algorithm the key becomes rotated to the
right by 7.

2.6.2. Encrypt and Decrypt

With the parameter from the previous section, each 32-bit word of the key creates a
computation graph similar to the one presented in Figure 2.7 Each of these graphs
can be divided into the four parts. One part is the address permutation, another a row
of operations. Then for each plaintext word there is a Feistel network and finally, a
block-wise permutation.

An excample graph is shown in Figure 2.7 Let this graph be created by the 32-bit
word of the key at position i. The parameters, that are extracted from this key at

13

2. Algorithms

position ¢, are:

Operation order: (Address Permutation, Row of Operations,

Feistel network, Block-wise permutation)
Address permutation: (0 1)(2 3)
Operations: (XOR, Addition, XOR, Rotation)
Feistel function: E — function
Block-wise permutation: perml = (021 3)

The address permutation and the block permutation are performed straight forward
as described in Section [2.3] For the Feistel network, a plaintext word at position j and
the key at position i 4+ 7 (modulo the number of 32-bit key words) are used as operands
to the Feistel function, here the E — function. As the E' — function needs two keys, it
also gets the key at position i + j + 1. This is done for each word of the plaintext one
after another. Regarding the row of operation, the first operation is performed with the
key at position ¢ and the plaintext word at position 0, if 7 is even, and accordingly the
word at the last position, if i is odd, as operands. The following operations use their
corresponding plaintext at position j — in ascending order, if 7 is even or in descending
order, if 7 is odd — as its first operand and as its second the result of the multiplication
(see Section of the previous result and the key at position i + 3 % (j — 1).

As shown previously, each of the operations are reversable, so the decryption proceeds

in reverse order. The listings and in the Appendix show these algorithms.

2.6.3. Key Extension

The key extension process is divided into three parts. First, the key becomes extended
by a certain number of self-encryption rounds. Therefore, the key is encrypted by itself
and the resulting cyphertext is appended to the key. In the next round this cyphertext
is encrypted with the key consisting of the original key and the first cyphertext, and
the resulting cyphertext is again appended to the key. So, in each round the key grows
by the size of the original key, until the key reaches the size: round x original key size
bits. The Figure illustrates this part further. If the key size and the plaintext
size are not equal, the key is extended to the next multiple of the plaintext size, using
O0xAAAAAAAA as padding.

Second, the extended key becomes hashed by a certain number of self-hashing rounds.
In each round the key is partitioned into parts of the size of the original key. Each part is
then encrypted using the extended key. The inverse of the resulting cyphertext is added
to the lower half of this part and to the upper half of the next part — if the current
part is the last part, then the next part referes to the first part. Figure pictures this
method in more detail.

Last, the extended and hashed key gets checked for 32-bit words, that do not fit certain
criteria, i.e. that are supposed to perform weak during the encryption process. There

14

[oo] [oe | oo | [[on] [oc | [oo | [|[o]
0X.... 0X....
encrvot in ECB 1. self-encryption
P round
ox...
B B B B [ow |
Lo] [ox] encrvot in ECB 3. self-encryption
[0] yp round
=
. 2. self-encryption
- encrypt in ECB round
[oe.]
[o |
Lo] [oe] [Coun] [Fomn] [Tomn |
| OX.... | | OX.... | | OX.... | | 0X.... |
| 0x.... | | 0x.... | | 0x.... | | 0x.... | Resuning Key;
[] N | I R |
]
[] last
encrypt in ECB self-encryption
I:I round
]
Ea B B B

Figure 2.5.: Key Extension: First Part

are two criteria: Each word has to fulfill the frequency test . Therefore, the total
number of ones or zeros should not fall under nine. The other criteria limits the number
of consecutive 0’s or 1’s to nine. Thus, if a word of the key fails one of these criteria,
the part containing this word becomes encrypted again and the inverse is added to the
original part.

15

2. Algorithms

0x.... 0x.... 0x.... 0x....

0x....

0x....

. ———»| Ox..

. ———»| Ox..

encrypt in ECB

0x.... 0x.... 0x.... 0x....

Figure 2.6.: Key Extension: Second Part

16

Plain Text:

0: 1: 2: 3:
| | | | | | | |
Ifey: | % | Address Permutation
i: —
. g 3
i+3: : \
. — Row Operation
i+6: :
[| [
] —>
o || [o |
" Feistel Network
o @?\. '
+
\4 ?
[][= |
i+1: /
Y \
? ?
\4
(o [« |
i+2:
[o] 2C \

+3:

/ \4
| 0x | | 0X... |
N X
perm1 Block Permutation
\4 y / \
0x... | | 0x... | | 0x... | | 0x... |

Figure 2.7.: Encryption

3. Analysis

The following chapter analyses the previously described encryption algorithm from
Chapter 2l On the one hand, its security is analysed as measured by the random-
ness of its output. To get comparable results the Statistical Test Suite (STS) provided
by the National Institute of Standards and Technology (NIST) is used. [§]

On the other hand, the performance and the used resources on different architectures
are compared.

3.1. Statistical Test Suite

The standardization process of the Advanced Encryption Standard (AES) analyses the
security of each candidate algorithm. Therefore the STS evaluates the randomness of
several sets of data each candidate has to generate. A short description of these sets can
be found in Section B.1.1l

In order to evaluate the randomness of one set of data, the STS performs 15 different
and in most cases independant tests that concentrates on one aspect of randomness. A
short description of each test can be found in Section [3.1.2]

After these two sections the findings of the encryption algorithm from Chapter [2] are
presented.

3.1.1. Sets of Data

These are the sets of data the NIST used to analyse the candidates for the AES [6], [10].
Each set of data should provide a good insight in how well an encryption algorithm deals
with one specific situation.

Key Avalanche

The Key Avalanche dataset shows how well the encryption algorithm deals with small
changes in the key. Therefore, a plaintext of all zero is encrypted with a random key.
Then each bit in the key is flipped one after another and again a plaintext with all zero
is encrypted with each of these modified keys. The changes between the cyphertext from
the original key and the cyphertexts from the modified keys are the provided data.

Plaintext Avalanche

The Plaintext Avalanche dataset shows how well the encryption algorithm deals with
small changes in the plaintext. Therefor a random plaintext is encrypted with a key of
all zero. Then each bit in the plaintext is flipped one after another and each of these

modified plaintexts become encrypted with a key of all zero. The changes between the
cyphertext from the original plaintext and the cyphertexts from the modified plaintexts
are the provided data.

Plaintext / Cyphertext Correlation

This set of data serves to analyse the correlation between the plaintext and its corre-
sponding cyphertext. A big random plaintext becomes encrypted in electronic codebook
mode [3] with a random key. The differences between plaintext and cyphertext — the
correlation — are the provided data.

CBC Mode

Analysing this set of data shows whether the encryption algorithm is suitable for the
cipher-block chaining mode [3]. Therefore, a big plaintext of all zero with an initialization
vector of all zero becomes encrypted in CBC mode with a random key.

Random Plaintext and Key

Providing a big random plaintext and a random key this set of data serves to analyse,
whether the resulting cyphertext is random too.

Low / High Density Key

This set of data serves to analyse how the encryption algorithm behaves with a low and
accordingly high density key. A random plaintext is first encrypted with a key with all
zero (all one), then the plaintext is encrypted with all keys having only one one (one
zero) and last the plaintext is encrypted with all keys having only two ones (two zeros).

Low / High Density Plaintext

This set of data serves to analyse how the encryption algorithm behaves with a low and
accordingly high density plaintext. A random key is used to first encrypte a plaintext
with all zero (all one), then to encrypt all plaintexts having only one one (one zero) and
last to encrypt all plaintexts having only two ones (two zeros).

3.1.2. STS Tests

The Statistical Test Suite takes a set of data and interprets it as several sequences, each
in the magnitude of one million bits. One set of data consists of 128 to 300 of these
sequences. FEach test calculates a P-value for every sequence to decide whether to accept
or to reject that sequence, in other words to decide whether this sequence seems to have
a random distribution of zeros and ones. In the case of the AES standardization process
the significance level « is 0.01, i.e. the P-value of a sequence has to be greater than «
to be accepted. Otherwise the sequence is rejected.

19

3. Analysis

There are two methods to analyse, if the whole set of data passes a test: On the one
hand, there is a proportion of sequences passing the test. If this proportion is outside

W, where p = 1 — a and m is the number of sequences [§], then

the interval p £ 3
there is evidence that the set of data is not random.

On the other hand, there is a distribution of P-values that can be inspected: They
should be equally distibuted, too. So a P-value of all P-values is provided—P-valuer.

The P-valuer should be greater or equal 0.0001 . [§]

Frequency (Monobit) Test

The proportion of zeros and ones in the entire sequence is calculated and the tests
assesses the closeness of the proportion of ones to 0.5. Small P-value indicate, that
there are too many zeros or too many ones in the sequence.

Frequency Test within a Block

This test partitions the sequence into M-bit long blocks and tests if the proportion of
ones in each block is about 0.5. If the P-value is too small, then in at least one block
there is a large deviation from equal proportion of ones and zeros.

Runs Test

The Runs Test calculates the number of runs of various lengths in a sequence. A run is
a not interrupted series of identical bits framed by at least one bit of the opposite value.
Too small P-values indicate, that the oscillation between ones and zeros is either too
fast or too slow.

Longest Run of Ones in a Block

Again the sequence is partitioned into M-bit blocks. For each block the length of the
longest run (see Runs Test of ones is determined and checked whether this length
can be expected in a random sequence. As the sequence previously has to pass the
monobit test an irregularity in the length of the longest run of ones implies that there
is also a irregularity in the length of the longest run of zeros. P-values smaller than «
indicate big cluster of ones and zeros.

Matrix Rank Test

The sequence is partitioned into M x (Q-bit blocks, where M is the number of rows and
(@ is the number of columns. Each block is transformed into a Mx() matrix and its
binary rank is computed. If the rank distribution differ too much from the expected
distribution of a random sequence, the P-value becomes small.

20

Fourier Transform Test

In this test the Discrete Fourier Transform is performed on the sequence and peak heights
are analysed. The purpose is to detect repetitive patterns that are near to each other
in the sequence. If so, the sequence is considered to be not random and the P-value is
small.

Non-overlapping Template Matching Test

The focus of this test is to count the number of occurrences of predefined m-bit pattern
in the sequence and to decide whether this number corresponds to the expected number
of pattern in a random sequence. A m-bit window slides over the sequence and searches
for a pattern. If the pattern is not found, the window moves one bit further. If the
pattern is found, the window is set right after the found pattern. This test is repeated
several times for different pattern.

Overlapping Template Matching Test

The focus of this test is to count the number of occurrences of predefined m-bit pattern
in the sequence and to decide whether this number corresponds to the expected number
of pattern in a random sequence. The differnce to the non-overlapping test is, that if
the pattern is found, the window slides only one bit and resumes the search.

Maurer’s “Universal Statistical” Test

The purpose of this test is to check, if the sequence is significantly compressible without
loss of information. If so, the sequence is considered to be not random and the P-value
is small.

Linear Complexity Test

The test calculates the length of a linear feedback shift register (LFSR) to determine
whether the sequence is complex enough to be considered random. Random sequences
are characterized by longer LFSRs, so too small P-value indicate too short LFSR.

Serial Test

This test determines the frequency of all overlapping m-bit pattern and assesses, if each
pattern occures approximately equally often. For m = 1, this test is the same as the
Monobit Test.

Approximate Entropy Test

This test compares the frequency of all overlapping m-bit and (m + 1)-bit pattern in the
sequence against the expected frequency in a random sequence.

21

3. Analysis

Cumulative Sums Test

The sequence is interpreted as a random walk, where 1 is interpreted as +1 and 0
is interpreted as —1. The sums for increasing lengths of the random walk / of the
partial sequences are calculated and the maximal excursion from zero is compared to
the expected results for a random sequence. For a random sequence the excursion of the
random walk should be near zero. The random walk is done twice: From the beginning
to the end of the sequence and from the end to the beginning.

Random Excursion Test

Again the sequence is interpreted as a random walk and divided into cycles at positions
where the random walk / the cumulative sum is zero. For the states -4, -3, -2, -1, 1, 2, 3
and 4 the number of occurences in each cycle is calulated and compared to the expected
results of a random sequence.

Random Excursion Variant Test

Again the sequence is interpreted as a random walk. The total number of occurences
of the states -9, -8,...,-1 and 1, 2,..., 9 are calculated and compared to the expected
results of a random sequence.

3.1.3. Results

Here the results of the Statistical Test Suite (STS) are presented. The sets of data are
generated multiple times, each with another number of rounds the encryption algorithm
has to run — from 1 round to 14 rounds. More rounds are possible, but there are two
reasons, why I stick to a maximum of 14 rounds. Looking at the charts, there is no trend
visible, that more rounds do improve the statistical randomness of the results. The other
reason regards the performance of the algorithm: More rounds reduce the speed of the
algorithm so far, that it is no more applicable.

To analyse the output of the STS, two types of charts are presented. In the first
chart the number of different, failed tests are compared to the number of rounds, e.g.
Figure 3.1l In the optimal case, no test should fail. The second chart shows, for a
certain number of rounds, for every test the propotion of successful sequences (the blue
rhombs) and a red line representing the minimum propotion (see Appendix . This
minimum propotion is calculated and dependent on the number of sequences (see Section
and as the tests Random Excursion and Random Excursion Variant do not use
all provided sequences in all tests, a gap arises in the line. This chart can be interpreted
as follows: Every rhomb above the line is a successful test and every rhomb below the
line is a failed test.

All in all 188 tests per set of data are executed: 148 Non-overlapping Template Match-
ing Test, 18 Random Excursion Variant Tests, 8 Random Excursion Tests, 2 Cumulative
Sums Tests, 2 Serial Test and one for each of the rest ten kinds of tests. In the following

22

charts, one kind of test is considered as failed, if at least one execution of this kind of
test fails.

High Density Key High Density Plaintext
16 16
14 14
12 12
o "
i 10 k7 10
g &
k-1 8 - 8
2 2
‘© 6 K 6
z F
4 4
AN —— 2 o~ —
0 0 T~ -
1/,2(3|4|5/6|7|8|9|10/11|12|13|14 1/2/3|4|5|6|7,8|9/|10/11/12|13|14
‘—row20121111131210 ‘—I'OW11121110011112
Low Density Key Low Density Plaintext
16 16
14 14
12 12
“ "
k7 10 o 10
e e
- 8 o 8
2 2
‘T 6 K 6
z F
4 4
2 2 P
w \
0 0
112 |/3|4|5|6/|7|8|9/|10|11|12|13|14 1/2/3|4|5|6|7,8|9/|10/11/12|13|14
[—row11111231012132 ‘—roW11111211232221

Figure 3.1.: High and Low Density Key and Plaintext

The charts in Figure [3.1] show, how well the algorithm performs with high density and
low density keys and plaintext. It performes slightly better with high density keys than
with low density ones. I believe this is, because of the operations being extracted from
the key by modulo operations, a key with more 1’s — especially in the most significant bits
— can result in a better computation graph. This shows, that the current key extension
method is not satisfying. It should, whatever key is given, return equally strong extended
keys.

On low or high density plaintexts the encryption algorithm again performs slightly
better with high desity plaintexts than with low density ones. In both cases the key
is a random one, so the computation graph should be approximately equally good, but
obviously plaintexts with many 1’s become better encryption results.

The tests, that failed are mostly Non-overlapping Template Matching Tests — nearly in
all tested datasets, if a test fails, it is most likely at least one Non-overlapping Template
Matching Test — and a very few other like Random Excursion, Random Excursion Vari-
ant. This is an observation, that throughout all tested datasets can be found. Currently
the encryption algorithm makes heavy use of the key as input to the computation graph:
Multiple keys are used for the row of operations and in almost the same manner multiple
keys are used for the Feistel network. This may be a reason for too many patterns in the
resulting cyphertexts. To avoid the multiple usage of keys, the row of operations and the
Feistel functions have to be re-engineered: Maybe a new conjunction of the operations

23

3. Analysis

in the row and less key usage in the E-function does the trick.

Key Avalanche Plaintext Avalanche
16 16
14 14
12 12
o o
a 10 a 10
8 &
- 8 © 8
2 2
‘© 6 ‘© 6
' '
4 4
2 2
o w . /\/_\ﬁ A
1/2(3|4|5/6,7|8|9|10/11|12|13|14 1234567891011121314‘
e—row 0 |1|1|2|0 21|21 |1|1 |1 /0|2|1]2 [—row01022011110010‘

Figure 3.2.: Key and Plaintext Avalange

The results for the key avalange and plaintext avalange in Figure [3.2 show quit good
performance. At the maximum two tests fail, but mostly it is the Non-overlapping
Template Matching Test, again. The dataset key avalange performs a little worse than
the plaintext avalange — this is once again an indicator for a not entirely satisfying key
extension method.

Random Plaintext / Key Plain-/Cyphertext Correlation
16 16
14 14
12 12
2 10 2 10
& &
- 8 - 8
2 2
]u_Ts 6 E 6
4 4
P ——— g — 2 —_— N _—/
0 0
11234 |5|6|7|8|9 |10/11|12|13 123456789‘1011121314
‘row1111112101112 ‘TOW111110210l11021

Figure 3.3.: Random Plaintext and Key and Plaintext / Cyphertext Correlation

The same goes for the results of the datasets random plaintext and key and plaintext /
cyphertext correlation in Figure[3.3} At most two tests fail, but mostly it is only the Non-
overlapping Template Matching Test. This is a little surprising for the dataset random
plaintext and key, hence the data on its own passes all tests — the used random number
generator is the Blum-Blum-Shub generator (BBS), like in the standardisation process.
In other words, the encryption algorithm produces, even though the data comes from a
random source, some pattern much too frequently. Looking at the charts in Figure
there is no pattern in which Non-overlapping Template Matching Test fail. This, again,
may signifies a too frequent use of the key.

The CBC Mode results, shown in Figure (3.4 are the best results all over the tested
datasets. Most of the times all tests are passed and all the rest of the times only one
test fails, with one exception at six rounds. Apparently, the special structure from the

24

CBC Mode

16
14
12

Failed Tests

o N B O o

112 /3|4|5|6|7|8|9|10|11|12|13|14
1/1/1/0/|0

row| 0

o
o
o
=
[N]
o
=
o

Figure 3.4.: CBC Mode

CBC Mode prevents too many template matchings in the cyphertext, but nevertheless
mostly the Non-overlapping Template Matching Test fails.

The table [3.1] merges the results and differentiates in how many datasets a specific
test fails at a fixed number of rounds the encryption algorithm has to run. As expected,
this show that the encryption algorithm has most problems with the Non-overlapping
Template Matching Test (NonOverl), followed by the Random Excursion Variant and
the Random Excursion Tests and then a few other. On the other hand there are always
about the same number of test failing in each round. From in total thirteen failed
tests, down to five failed tests with nine rounds. This concludes, that the results are
about equally stronge, i.e. equally random, whatever number of rounds the encryption
algorithm runs. This conclusion corresponds to the appearance of the charts: There is
always some up and down for the number of failed tests, but the trend stayes the same.

Having a closer look at the other type of charts in the Appendix [A.3] you can see,
although some of the tests fail, it is never a total failure. The failed tests often are just
below that red line, i.e. mostly just about one to three sequence to much fail. And even
if Non-overlapping Template Matching Tests fail, there are not many tests that fail — at
most about five out of the 148 individual tests — and there exists no recognizable pattern
among the failing tests.

All together there are two remarkable problems to this algorithm. First, to eliminate
the the number of failed tests. One idea therefore, is to reduce the number of multiple
key usages. Second, to enhance the key extension algorithm. After all, this is responsible
for how well the computation graph is constructed. Experimenting with other operations
can lead to improved performance, too.

3.2. Performance

Here the average performance of different parts of the algorithm, as described in Chapter
2], are meassured. To get a satisfying overview, the algorithm is performed on different
processor architectures and with different number of rounds.

The following numbers represent a kind of lower bound for the performance of this
algorithm, hence its implementation is not focused on performance, but on easy and fast

25

3. Analysis

adaption on new ideas (which occured frequently during the development).

Rounds ‘ Encryption Speed ‘ Decryption Speed ‘

MacOS X 10.6 with 2.4 GHz Intel Core 15

Key Extension

1 ~ 59 Mbit /sec ~ 59 Mbit/sec | ~ 0.00006 sec/extension
5 ~ 11 Mbit/sec ~ 12 Mbit/sec | ~ 0.00074 sec/extension
9 ~ 6 Mbit/sec ~ 6 Mbit/sec ~ 0.00226 sec/extension
10 ~ 6 Mbit/sec ~ 5 Mbit/sec ~ 0.0028 sec/extension
15 ~ 4 Mbit/sec ~ 4 Mbit/sec ~ 0.00604 sec/extension

Linux, CENTOS 5.5 with 2,3 GHz AMD Opteron 8356 (Barcelona)

Rounds ‘ Encryption Speed ‘ Decryption Speed ‘

Key Extension

1 ~ 92 Mbit/sec ~ 80 Mbit/sec | ~ 0.00004 sec/extension
5 ~ 18 Mbit /sec ~ 18 Mbit/sec ~ 0.0005 sec/extension
9 ~ 9 Mbit/sec ~ 9 Mbit/sec ~ 0.00154 sec/extension
10 ~ 8 Mbit/sec ~ 8 Mbit/sec ~ 0.00192 sec/extension
15 ~ 6 Mbit/sec ~ 6 Mbit/sec ~ 0.00418 sec/extension

Rounds ‘ Encryption Speed ‘ Decryption Speed ‘

Linux, CENTOS 5.5 with 2,93 GHz Intel Nehalem-EP

Key Extension

1 ~ 145 Mbit/sec | ~ 145 Mbit/sec | ~ 0.00002 sec/extension
5 ~ 31 Mbit/sec ~ 30 Mbit/sec ~ 0.0003 sec/extension
9 ~ 15 Mbit/sec ~ 15 Mbit/sec | ~ 0.00094 sec/extension
10 ~ 13 Mbit/sec ~ 13 Mbit/sec | ~ 0.00112 sec/extension
15 ~ 9 Mbit/sec ~ 9 Mbit/sec ~ 0.00242 sec/extension

26

27

Rounds H NonOverl ‘ RandExVar ‘ RandEx ‘ Other H Sum
1 6 1 7
2 7 7
3 6 Serial 7
4 8 4 12
5) 6 2 Longest Runs 9
6 6 3 1 10
7 8 3 Approx. Entr. 12
8 8 8
9 3 1 1 5

Universal, Freq,
10 8 ! CumSum, Overlapping 13
11) 1 2 Block Freq. 9
12 7 1 Serial, Run 10
13 8 3 1 LinCompl 13
14 6 1 FFT, Longest Runs 9
Sum | 92 | 18 8 13 | 131

Table 3.1.: Number of datasets, in which a specific test fails.

4. Conclusion and Further Researches

Here a new encryption algorithm is developed, whose computation graph depends on
the key. The algorithm is analysed with the same methodes as the Advanced Encryption
Algorithm (AES) during its standardisation process. Though the algorithm does not
always fulfill all the tests and especially has a big problem with the Non-overlapping
Template Matching Test. It could be said that it is a secure encryption algorithm, which
introduces new ideas no other official encryption algorithm implements. In addition, the
failing tests always came close to passing.

However, there are still tasks to do. The encryption algorithm has to be enhanced, so
that it finally fulfills all tests from the Statistical Test Suite. In the first place, this means
to fulfill the Non-overlapping Template Matching Tests. Currently the algorithm uses
parts of the key very frequently: for the row of operations and for the Feistel network,
especially with the E-function. This may lead to too many patterns in the resulting
cyphertext. Furthermore the key extension method is not fully satisfying, as keys with
a more dense filling of 1’s perform slightly better than keys with a less dense filling of
1’s.

When this is done, the code has to be optimised. Right now, the code is developed
in a way, that allows fast adoption to new ideas: Other operations, other F-functions,
etc. . Admittedly this leads to slow encryption / decription results with about 6 to 13
Mbit/s. T believe, this can be increased dramatically.

Finally, the algorithm has to be analysed with different key lengths. Here, solely
128-bit keys are tested, but to pass the second round of the standardisation process,
key lengths of at least 192-bit and 256-bit should be tested. Partial round testings have
already been performed in here and show, that the algorithm is approximately equally
strong already in one round.

CO O T W N+

LW WRDNDNDDNDNDDNDDNDDNDNDDN P — = s
= O O IO Ul WNEFEF OO O ULk WwNnEFEOO

A. Appendix

A.l. Extract Parameter

Let Row be a data structure containing the parameter extracted from one 32-bit key
word k. The function createPermutation() creates a permutation of the Sic,igi.. from the

first parameter.

// calculate the permutation, there are textSize!
row.addrPerm = createPermutation(&k, textSize);

// block—wise permutation operand 1 and 2
row.paddrl = k % textSize;
k /= textSize;
row.paddr2 = k % (textSize —1);
k /= (textSize —1);
// they must not be the same
if (row.paddr2 >= row.paddrl) ++row.paddr2;

// select block—wise permutation
row.perm = k % NUM_OF PERM;
k /= NUM OF PERM;

// right rotation by 7
k — RROTATION(k,7);
// the order of the operations
ret.opOrder = createPermutation(&x, 4);
// select first operation
row.ops |[0] = k % NUMBER_OF OPERATION;
k /= NUMBER_OF OPERATION;
for (i = 1; 1 < nTB; ++i) {
// select other operations
row.ops|[i|] = k % (NUMBER OF OPERATION-1);
k /= (NUMBER OF OPERATION-1);
// with none the same as its predecessor
if (row.ops|[i] >= row.ops|[i—1]) ++(row.ops|i]);

// F—function for feistel network
row. feistelOp = k % FEISTEL_ OPS;

many

Listing A.1: Extract parameters

A. Appendix

A.2. Encryption and Decryption

Let Koos be a data structure containing the key size, the text size, the number of rounds,
an array with all parameters called rows (see Section [A.1]). The function permutateSs()
permutates the second parameter with the permutation given with the first parame-
ter. The array operators contains the function pointer to the corresponding operations.
The array inverseOperators contains the function pointers to the corresponding inverse
operations.

0 O Uik Wi

Ne

void encryptRow (const Koos *s, uint32 t xtext)

{
int32 _t i,j,k;
uint32 t prev, xtmp, currKey;
Row xr1;

tmp = copyArray (text, s—>textSize);
// for each row
for (j = 0; (uint32_t)j < s—>rowSize; ++j)

A R R L0 W W W W W W W W WN N DNDDNDNDNDNDND e e e e e
W OO IR WNNRFE OO URE WNRFE OO0 Utk WwNh—=O

// current row
r = &s—rows|[]];

for (k = 0; k < 4; ++k) {
switch (permutateS8(r—>opOrder, k)) {
case ADDRESS PERMUTATION:
for (i = 0; i < s—>textSize; ++i)
text[1] = tmp|i];
for (i = 0; i < s—>textSize; ++i)
tmp|i] = text|[permutateS8(r—addrPerm, i)];
break;

case ROW_ OF OPERATION:
if((j % 2) = 0) { // even rounds

prev = s—key|[]];

// for each textblock => operation

for (i = 0; i < s—>textSize; ++i) {
currKey = s—>key [(j+3*i)%s—>keySize |;
tmp[i] = operators|[r—>ops[i]](prev, tmp[i]);
prev = multOp (currKey, tmp|[i]);

}

} else { // odd rounds
prev = s—>key [(j+3*(s—>textSize —2))%s—>keySize |;
// for each textblock => operation

for (i = s—>textSize — 1; i >=0 ; —i) {
currKey = s—key [(j+3*i)%s—>keySize |;
tmp[i] = operators[r—>ops[i]]|(prev, tmp[i]);
prev = multOp (currKey, tmp[i]);
}
}
break;

case FEISTEL NETWORK:

30

44
45
46
47
48
49
50
o1
92
53
54
95
96
o7
o8
59
60
61
62
63
64

0O Ui Wi -

O I I I I S T N T N N Y S G S S g oy W G S U
SO0 T DR WN RO O©W-IO U R WN RO W©

for (i = 0; i < s—>textSize; ++i)
lawine (s, tmp, i, r—>feistelOp, (j+i)%s—>rowSize);
break;

case BLOCKWISE PERMUTATION:
// two byte permutation on the
// four bytes of r—>paddrl and r—>paddr2
permutate(&tmp [r—>paddrl|, &tmp|[r—>paddr2]|, r—>perm);
break;

default:
break;
}

}

// write results
for (i = 0; i < s—>textSize; ++i)
text[i] = tmp[i];
}

FREE(tmp) ;
}

Listing A.2: Encryption

void decryptRow (const Koos s, uint32 t =xcypher)
{
int32_t j,i, k;
uint32 t prev, currKey, *tmp;
Row =xr;

tmp = copyArray (cypher, s—>textSize);
// for each row from bottom to top
for (j = s—rowSize — 1 ; j >= 0; —j)
{

r = &s—rows|j|; // current row

for (k = 3; k >= 0; —k) {
switch (permutateS8(r—>opOrder, k)) {
case BLOCKWISE PERMUTATION:
// inverse two byte permutation on the
// four bytes of r—>paddrl and r—>paddr2
permutatelnv(&tmp [r—>paddrl], &tmp[r—>paddr2], r—>perm);
break;

case FEISTEL, NETWORK:

for (i = s—>textSize —1; i >= 0; —1)
lawinelnv (s, tmp, i, r—>feistelOp , (j+i)%s—>rowSize);
break;

case ROW_OF OPERATION:
if((j % 2)=—0) { // even rounds
prev = s—key[j];
// for each textblock => inv—operation

31

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

A. Appendix

// and write to inv—perm—address
for (i = 0; i < s—>textSize; ++i)
{
currKey = s—key [(j+3*i)%s—>keySize |;
cypher[i] = inverseOperators|[r—>ops[i]]|(prev, tmp[i]);
prev = multOp (currKey, tmp[i]);
tmp[i] = cypher[i];

else { // odd rounds

prev = s—>key [(j+3*(s—>textSize —2))%s—>keySize |;
// for each textblock => inv—operation

// and write to inv—perm—address

for (i = s—>textSize — 1; i >=0 ; —1)

{
currKey = s—>key [(j+3*i)%s—>keySize |;
cypher[i] = inverseOperators|[r—>ops[i]](prev, tmp[i]);
prev = multOp(currKey, tmp[i]);
tmp[i] = cypher[i];

}

break;

case ADDRESS PERMUTATION:

for (i = 0; i < s—>textSize; ++i)

cypher [permutateS8 (r—>addrPerm,i)]| = tmp|[i|;

for (i = 0; i < s—>textSize; ++i)

tmp[i] = cypher[i];

break;
default:
break;

}
}
}
// write

for (i =

results
0; i < s—>textSize; ++i)

cypher[i] = tmp[i];
FREE (tmp) ;

Listing A.3: Decryption

32

A.3. Detailed Analysis Charts

This second type of chart shows, for a certain number of rounds, for every test the propo-
tion of successful sequences (the blue rhombs) and a red line representing the minimum
propotion. This minimum propotion is calculated and dependent on the number of se-
quences (see Section and as the tests Random Excursion and Random Excursion
Variant do not use all provided sequences in all tests, a gap arises in the line. This chart
can be interpreted as follows: Every rhomb above the line is a successful test and every
rhomb below the line is a failed test.

The order of the rhombs matches the order of the tests in the resulting file from
the STS: Frequency, Block Frequency, two times Cumulative Sums, Runs, Longest
Run, Rank, FFT, 148 times Non-overlapping Template Matching, Overlapping Tem-
plate Matching, Universal, Approximate Entropy, eight times Random Excursions, 18
times Random Excursions Variant, two times Serial and finally, Linear Complexity.

33

A. Appendix

1 Rounds 2 Rounds 3 Rounds
1,01 1,01 1,01
1 [60-00—0000000-0000 000NN 0B D —— 160 40400 <O RBVOODERO O CHROOES> 1 e o
099 f 0D DOER> O KO GV DO O DHD ORI O CEDEROOCHOCNRD 00 &
PO W0NDNs 00O 099 0,99 008
098 2% oo o L i P 000 0000000 GND 60 WNee ™ O PO00EE 0 SIS & BEe 00 DO o
® W 460606 S0 o o 3 098 0,98
097 > oo o e o o G0 000 S @ o 0 o D
y - 1 r 0,97 S 2En 2 2 * 097 —so & L a4
:Z: L J - 0,96 1 f 0,96 - 1 f
g ° —J —]
0,94 0,95 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
4 Rounds 5 Rounds 6 Rounds
1,01 1,01 1,01
1 [o-on +-0- 0000 1 004D EBOGIN 0 BIDID-B-ID 0 SINNND DI 1 G000 ORI CO-OUD-O—
o 0 0D
099 WO, © OO GO WRNBAIDI O 0D D & 0,99
095 MO ND 2004000 S0 NENS 4 & > 099 b o oo om - 00g |8 SNBSS B0 ¢ WONN w0 My
R K e 0 s e 098 oo ne hattaiad s e oo we o
097 -+ R @ 6 % %o 0 o4 o0 097 - - -
. = x \ r 0,97 * - - 096 + + 1 r
7y 1 d —
0,95 + 0,96 t] 0,95
* *
0,94 0,95 0,94
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
7 Rounds 8 Rounds 9 Rounds
1,01 1,01 1,01
1 10000 0004000000660 00 4040000 O 1 00T OO0 1
0,99 099 o 0,99
g © D W B WD G0 GBI 0000 O * g
D 00 © G40 OB 40000 0 & & * 0,98 SO O O L> BXO O CRUNOEDS>
098 -~ L XX 3 * e o0 0,98
pooe o * 0000 0,97 - - - * o mnooe ®» e e o
097 96 & & & & +& 0,96 r 3 1 r 0,97 e * * -
0,96 - 1 s 0,95 0,96 ry) r
°* .
0,95 0,94 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,01 1,01 1,01
L mw EIIRRY 2R X 22 SR 2 R R R R 1 @OOURO G FROBINDICO OO CQDDO &
030 P - ', 0,99 w0 Y o 000 |48 © eme O O ORRRO LS
098 000 GEE OGN0 000 ¢ DO * WO B SN W BN
B BeNes soMem 098 0,98
0,97 - - LX 2 0 0 000000 % ¢ 00 CRdndd P NG W 20 0® 20000 o
 r ¥ r 0,97 ** 144 0,97 > L 2 L 2 4
09 . % | Bhd 1 [d
0,95 . 0,96 - - 0,96 X3 L
0,94 0,95 . 0,95 hd
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,01 1,01
1 OEROCEONT GO SCUADE 0O & <> 0 1
090 20 SOUS B W NNG B © > WSS * 099 S GORIWIOOTOD RS D 90O
g5 1O NG BIRNNWHOG e W ® 00w, op | SOIBNS WweRo W omw @ o
0000 & 000 ¢ Bty o oo 0 o * 00 o N
0,97 L 25 ZEmm s 2 * 0,97 L 2 e 2
ry 7y 1E2X Y | r
0,96 t] 0,96 ! J
0,95 0,95
0 50 100 150 200 0 50 100 150 200

Figure A.1.: High Density Key: detailed results

34

35

1 Rounds 2 Rounds 3 Rounds
1,01 1,01 1,01
. 1 [G000 000000 G 00 RHROMDOE> 1 900> 00 O SBROGOO GOENO CRIWTIO @ O
0,99 $ 0% 1 © 000 BB U ¢ ¢ o0 » e’ *® 0,99 * *
P OIS 00000 SONN IBONS BB . 0,98 0 W O WO & O 0000
0,98 6 000 & W oo we 00 oo 0,98
0 200 o00s o 4 0 W o o 0,97 s e o - XX XX XX IR X
0,97 * @ L 4 1 r 0,97 * * *
. - r 0,96 t | . ‘%
0,96 | 0,95 * 0,96 =
- *
0,95 0,94 0,95
0 50 100 150 200 0 50 100 150 200 [50 100 150 200
4 Rounds 5 Rounds 6 Rounds
1,01 1,01 1,01
SO CEDGEDD & OVI0O 0D OUADOLS © &
og; * ®ue 1w 1 400040000 OINN0 00006
098 LEBNIDD S00Hn & 000w R T T 099 o o
" L 2Ad * K K 2K 3 * ” ”
0,97 ,.—.—.—.—.—‘40; 0gs [®_® 9 LR XK 2 0og |PO00S & oo o >
0,9 ’ w ¢ eomo * ®s o o ' - * e % ¢ ¢ 0 o0
0,95 097 oo * * *» 0,97 LA 2 J Jume 2 2
0,94 7y 1© 0 r
0,93 * 0,96 4._.—‘_._‘:"7. 0,96 A
0,92 0,95 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
7 Rounds 8 Rounds 9 Rounds
1,01 1,01 1,01
0,99 0,99 0,99
g | SROEIONI 904 00 ¢ woone ass (8 SORIDNIS 00 000 0000 o . oos (#8099 00 o o0 aocExoinn & 00D
e em e 6 ¢ emeee * o ' * amoes DR KR ' e B ® B e o
097 & L 2 » *¢ 0,97 * * *» * 0,97 * L N L 2 e
1 r e or e [
0,96 * 0,96 1] 0,96 1 f
0,95 0,95 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,01 1,01 1,01
1 1 |66 600000000 0ND & 00000 SIS OD 1 e
0,99 .3 L. . .23 WA & R £ BB & *
S O <8 0,99 0,99
oog B SN SO N OWE 0cee ¥ CO GO EDO OO O WO OB o0 wne o
s o ®we o swne o 0,98 0,98
097 44— o6 > » ® o 0 s neee o # 000 o o s 00 * o .
-} of 097 o6& & * * 0,97 £ *
0,96 R — " *r s
095 . 0,96 - | E— 0,96
0,94 0,95 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,01 1,01
100 O WD OO OG> HIHND VOOVEDO 1 seeee *
gg SOOCIMD D HIOEDO D > CH0 * 0gp ORI O O GO K0S O
os 000 ooz WO ® 000000 00 oM Omee
T e e ee o» we s . . T [00e0 e 00000 ¢ cmoeen o
0,97 * L 2 2 * * 0,97 L g * &
&
0,96 * ll r, 0,96 * 1! f
0,95 095 L
0 50 100 150 200 0 50 100 150 200

Figure A.2.: High Density Plaintext:

detailed results

A. Appendix

1 Rounds 2 Rounds 3 Rounds
1,01 L 1,01 1,01
1 o 1 00060 © 00O GOONO S BB © S CENOS 1 00 00RO & O @O KOWOOO DO
0,99 w Qo0 & CURID00 CDENCHMIOEBBO QO (99 0000 QUOA00 SHITUTTO 0 CTRDOXROL
) g " o &
0os S99 @ s wem o @ WO 20000 ® g |0 SS9 0000 4000 o V0000 900, oos |_S9 S SN GNOENE 6w & 000 e00¢
’ "“» e *e * *0 *» * " * LK. 2 XX 2 L2244 * ’ * 00 ** o0 ”» e “0.. P
o
0,97 * L 2 4 * 0,97 & & * 097 —& 4 a4
7y 7y 1 r ry | r 7 ¥y 1 r
0,96 l ' 0,96 0,96 1]
0,95 0,95 . 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
4 Rounds 5 Rounds 6 Rounds
1,01 1,01 1,01
100000 OO0 000 NG OO 00D CIOO 190 4 G0 & WMEPNIDN 40 & W ® 1
*
099 "o o * *
DM 00 40 ® 0w B 009000, 099 0,99
0B U wme 6 @ @ @ 6o oo [FHI00 HBIO AN 40440000400 900 s |_S® B 900 00 Mo 0 00 40 *
097 SIS g O B0 00 20000000 s O ¢ 7 [we eee o NN B o S
0,96 1 r 0,97 * * N 0,97 * * * Py
0,95 . 0,96 7) f 0,96 - L F
* - O
0,94 0,95 0,95
[50 100 150 200 0 50 100 150 200 0 50 100 150 200
7 Rounds 8 Rounds 9 Rounds
1,01 1,01 1,01
1[S00 0I06 400 DD OI00NN0 40 00— 1R €D G0 L LD OO DD 1 00—000-001-0— 0000000000000 000G —
099 < aom 0,99 0,99
R xryereyxs 3 g
098 T o6 & oo s oos PO S0 MG 400 0 w0 @ * s | BOW BN G0 080 40000
097 - - had TC® e 6 6 W8 s e e @ T [0 #e e ow 00 0000 ¢ 00 00
0,96 40% 0,97 L 2 2 * * 097 —¢
095 L - 0,96 e L f 0,96 —f
0,94 0,95 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,01 1,01 1,01
: J;:& , s oo - : , e somms e s o o
. - P v 099 CRADAS ORI O L KHGREES © &
0,99 0,99 0% @,
¢ pexa= - DO WO GG
o5 PP 99 #000um 40 e 0 o o [F000NOEIN0 ¢ W0 e B © - 0,98:‘ ::’ "’:.‘;"‘ had A4
’ o & O °~>0 o * o g OO BD IO ¥ ¢ 0 ¢ e 097 ———¢o ¢ ¢ ¢ &
0,97 * 0,97 * * * r r 3 1 o [
7y 7y e _of ry ry 1 r 09 —
0,96 i f 0,96 1 f 0,95 .
0,95 0,95 0,94
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,01
1 000000000 4D ¢ W S WIDOONO VWD
0,99 04> GBEO FWVOCROE> GO & QM *
0oz P0G G000 _HED SIS & 00N *
0,98 L & o ol ESEE C GESR ok o) 0’97 L2 K 2 X X1 40 % 000 * o0
)} 4 A A
XX - e . X3 . 096 - ne® o
097 oo Wwe ry
- ¢ o 095
0,96 | S— 0,94 -
0,95 0,93
0 50 100 150 200 0 50 100 150 200

Figure A.3.: Low Density Key: detailed results

36

oo s e wom oo @ —

1090 NEDO-D D 00— 0000000000000 —
*

® O o Wews 400 o osne DN

1 Rounds 2 Rounds 3 Rounds
1,01 1,01 1,01
3 o & cman . J;'_“w , [otmeanns smmecnes cummeses o
0,99 . 'S ® 0,99 . 00 ® ®ece 0,99 [e0e R SBENO00 & .
4 L 22 " L 24 3 R aed
008 000 W0 QOO EOEROTT 098 0 9 G0 NG G0 60 M0 08 O OOONDNIBI * o0 VO 400 o
. G B e 40 BN 0 0y o ’ ® o o s T o0 0 e0 oo * PN
097 —soo® — * & & & 097 row * * 097 o ¢ ¢
7y 1 r oI 7y 1 r
0,96 1 J 0,96 — 0,96 1]
0,95 0,95 * 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
4 Rounds 5 Rounds 6 Rounds

AN —0-O- B0 0000 4NN NN - I —
[& & 0NN MNOENN0S DNBIED &

[0-0-0— 00000 SSHEN- O — O SNDNF ——
PO SHOH B0 OO BB IO %0 &

00000000 NNOID 0000 VNI O —
[CDOIIODINONI 00 SNONDIND 0 &

0,99
* Rt 0,98 4 FaKd
098 00 4N W WD DS & WOED ¢6 NI *» *® @ & %00 o6 . PO 098 IPODWIONG G0000 S V0O V0000
* 0 000 o6 G0 0,97 - - PS - > PGB B0 NN WO 00,
0,97 * L2 adung 0,96 ® of 0,97 * >
0,96 * 1 f 0,95 N 096 & 1 ef
. Lol g —
0,95 0,94 0,95
0 50 100 150 200 0 50 100 150 200 [50 100 150 200
7 Rounds 8 Rounds 9 Rounds

40O SIBED 00— 40NN 0D I0ND O 00O —

<W

NGO S0 OB GO VNN NN

37

hop | WS W N0WE S0 mes we - afhone, hop T OO WOIeae 900000000 & 00 $TOOY g‘s‘: * DS 000 oo o o o0
" [000000 e G0 000 @ we , T #e o cmnes e e ' A hd 2 9
097 —o & * 097 o oo 0,96
0,95 -
0,96 | I 0,96 7y s | of
’ —d ’ —dd 0,94 *
0,95 ® 0,95 0,93
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,01 1,01 1,01
1 400000 00000 G0 W00 WM 100000 OO0 GO DO KAWDS DO 1 <O 00 $0000 S DO 0> @OEDO
009 U OCHIDRDOEO O GUD 000 O 009 |9® * 009 ®® O FBABBOKE>
g © o g g Fo X%
os PRES Wow e m o0 ¢ 4 R dhdirdiusidtenassasdind . o5 (BRW S0 es w0 w o
T eeewm » ®n seens e e o o e S0 ”w e Y s cmm e m o, o
097 o ¢ & 097 % S+ & & 097 |¢ > *
7y 1* r 7y 'y | r
0,9 0,9 — 09 \ f
0,95 0,95 0,95 *
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,01 1,01
1 CDOCBUHIOLO > OO W DO EO O 14000 0 GEID DM W0OOIE &
090 |G HID NNCD SN0 SWMMMS - . 030 |99BIBNEHSE® MBS HBENN S & .
098 @ @O 0D 0O DA KON 0 * 098 O HOOOUDO OO GO GO HND
g ¢ s0 0 oo e woo . * Wes G006 000 W o *
097 o - - 0,97 v >
o
0,96 * ! ’, 0,96 * ‘l rl
0,95 *» 0,95 .
0 50 100 150 200 0 50 100 150 200

Figure A.4.: Low Density Plaintext: detailed results

A. Appendix

1 Rounds 2 Rounds 3 Rounds
1,005 1,005 1,005
1 1 * . 1
0995 4 0 ue oo toen oa 0o Sor osest & 0995 b4 4% S50 2% ered oes 0s9s | *. VRPN
PR AR XX X OMRXC XS 099 LS8 20O OO 00 S 40 me & 005 | S JOIWNLND 00 0 S0wmRe o0
0035 | SBe0 00 wite s w9 0055 PP OMEET & "e 0w o0 00 0O 0935 no POy o SO0 B 000 TS 0000 &
098 ¢ e PR oo 058 Dt MR R S ut S N 00 Bp 2 08¢ @ T Tevee” e
0,975 7 - 0975 0,975 2 K J
:) v v) v
097 T 0,97 le T 0,97 * -
0,965 0,965 0,965
0 50 100 150 200 0 50 100 150 200 [50 100 150 200
4 Rounds 5 Rounds 6 Rounds
1,005 1,005 1,005
1 e e e T . e @e 1
0995 Pe® % ORI YR VP RR 0995 PTTORCIRE X s o 000 0095 lo%eh TR RS o
A X T S S IR TIRRIXKS 099 | QO 000 “Su® 90299 PRSI AR N X I
0oms W, B 20 % e we »e s 0985 SO0, 9 IS 420" 44 000 M09 o o, o085 | * R " e o
0o @9 e o 0700 ® o 008 00 ®we » . 0o | . & A
& ¥ ”” Lid L4 hd ” L4 4 A4
0975 —%, 20 0,975 L) L2 0,975
o T 097 I 097 -
0,965 0,965 0,965
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
7 Rounds 8 Rounds 9 Rounds
1,005 1,005 1,005
1 e e e e 1L e e e e 1 e e e @
0395 020 %o omo P o 3% we 099 P2 eed %ol S 000 o 0095 X * ® *
o XK T A TR IR 0,99 90 0 @0 WO0S O 40 O o 0%, 05y JUBEN U0 4 WINGI BB B 40 W
0585 SOIS SR LW 0000 & WO B0 00gs SO " & LM Nt T vad 005 | BE @ 886 9T 0 90 wes O
008 |9 e 40 e eet®oe 008 | & se0e e *» 0.8 ® 00 00 ¢ 00 ¢ @ py
" L d A4 FY T3 ”” L d " ™% & .‘ <K ” L d "
°
0,975 0,975 0,975
- v " v v ” v
P AR S . 007 T 097 -
0,965 0,965 0,965
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,005 1,005 1,005
1 e e 1 e e e
. * 6.0 00 00 @ CRYD o 2% Sunue 'y o wnue o o
0995 (9000000 0 S0 06— ¢F S0y 099 : Vg 0,995 o
0% .0::0 . * mon?m f. 0% 0’;“ 0:0 R 0::» o 0% g IERRRANL S Sowe 05 %
0,985 —oe *® - ™ 0985 [T T T e e e — : X AL X
* & 40 o @ *» * 00 * * N 0985 oo ¢ S & & ¥ W & ———
0% oo * * 0.98 * LA d * ¢ 606 e
0,975 K2 X - 0,975 * o K2 098 ¢ e e . -
0,97 L 0,97 N 0,975 = 2
0,965 0,965 0,97
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,005 1,005
1 XS 1
0,995 P 0ds AV 4 A oA 0,995
GOS SNBE 15 90, S oes. T S e ewee
0,99 * 0,99
0085 230 O S O8N S W8 40 set 0985
098 e * S & 098
0975 —% - LN X — 0,975
0,97 0,97
0,965 0,965
0 50 100 150 200 0 50 100 150 200

Figure A.5.: Key Avalange: detailed results

38

39

1 Rounds 2 Rounds 3 Rounds
1,005 1,005 1,005
1 1 1L e . e ee
0005 % ® 0 @0 - 0005 PSSO ® 00 00 oo 0995 %Beed. WOWe e 00 00
090 E WS S0l WNs w00 o ar 090 [0 L€ S WBININS 40 0" 00 00 PO MO AOCX
0085 D g MO 0 IR o0 SHBO o 0985 [%e0sde PEO B 000 00 00 000 WO o 0985 W W e M 6 g
0,98 * * k22 *® *» 0,98 > & * *» * 0,98 *0 * LR X2 2
” L4 e & LK 2 »” '—._._.—.—“_‘; ” K4 e
0,975 °®] [0975 — e o L2 ," Ld r 0,975 |“‘ r
0,97 0,97 0,97
0,965 0,965 0,965
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
4 Rounds 5 Rounds 6 Rounds
1,005 1,005 1,005
1 1. e e 6 e _ o6 1
0005 |0 G 09000 0 o o . 0955 % RTINS 0995 * o0 . ¢ 200
0s0 PLSRMNDINI "SI 9% 0 00,008 90 00 000 09 Pare % S % Tes S ‘us owee 000 |SEOLT SSRGS GRESHO NS S we &
0585 | o WEOEN CHEE W "o & o 0985 08 SRS B TPy e o P g O SO T L MR 2T
e S S e e ® 00”0 e 008 o0 0o eo . ® 008 % . 0w et ©
) L i A * * * 98— s & *¢ & 198 oo £ 2 *
0,975 2 -- N 0,975 2 0,975 L
0,97 —l—;—L 0,97 [A 0,97 I N
0,965 0,965 0,965
0 50 100 150 200 0 50 100 150 200 [50 100 150 200
7 Rounds 8 Rounds 9 Rounds
1,005 1,005 1,005
16— ——¢6 ¢ — & ——— 1 1
0005 |® CX s o oo R X TR TR XX 0095 . »w e o »
099 ORI 06 SO B ss m'm»qo 099 48 o520 SO 200 ¢ WU 200 e 0 099 | S0 20 00000 2SS B % ® w0
) L PGP ™ b B TS G ek LAAATI e 2)
R £ R 2 R MR XX 0585 o000 H00 0SS0 S s © W 0085 | & & B SO S WIS & 0 & 40
, .) oo ,
008 ®-Q, * e . 0os | 8 o0 *e 098 oo . .o
0,975 L e 0,975 L 0,975 *
097 N L] 0,97 I AR N _— 097 * L
0,965 0,965 0,965
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,005 1,005 1,005
TS AW X ! e *e &
0,995 0,995 0,995
000 | *® LR O 099 T R 90 OS50 000
, ,) 5
oss PO S MBS SS9 9 S @ 085 oms |9 S0 00 XS
o8 % S oo v & o w 098 098 o DX X RAR RN
0,975 . 2 . 0* 0,975 0,975 L2 ® .2 L
! — Lo) , | r
0,97 0,97 0,97
0,965 0,965 0,965
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,005 1,005
1 1
0995 e e en’ *0 0 o 0995 ba®d% %2, 0.0 % *
00s & 980 40000000 40D 4 S0 00 e & 000 |9 W & PG *
199 50 OB S 06 SO W O o o —)
0,085 Logd® SH0LNE 200 4 0000 o ldbed 0035 D IO G0 00 4000 080
¢ o w oo we *® * e *®
098 —g@ > > 0,98 1 4 L 2 4
0,975 2 L J (X 0,975
! - | T % 1 i
0,97 0,97
0,965 0,965
0 50 100 150 200 0 50 100 150 200

Figure A.6.: Plaintext Avalange: detailed results

A. Appendix

1 Rounds 2 Rounds 3 Rounds

1,005 1,005 1,005

1l ®weeo—0 — @oo— o 1 1 66 6 w0 6 6 e e
0005 | 80 SO WO S 08 00 0,995 e 00 @ 0000 0005 | BN S 00000 SO *
oy Y SIWeIns 8i%we Sounses & O 9. e s W STH s 2006 o oF > e o Y e

WOOD 4 4000 0 & & 550, 0 an 0000 00 aw o 00 CACLW AR X TARS
0555 T @ — ¢ eso® oo @& o o 0585 =g W S 6 60 SeeniBe 0955 e~ o9 96 6606006 o ®
098 6@ 098 66 o 066 066 G 06 08 & e 6 & &
. o o RS . * RO .

0,975 . ’ 0,975 = e 0,975 9 ;

0,97 \] 097 1 | 0,97 —
0,965 0,965 0,965

0 50 100 150 200 0 50 100 150 200 [50 100 150 200
4 Rounds 5 Rounds 6 Rounds
1,005 1,005 1,005
VU Pun Ve, G S 1 16 e e e
e X ER TR Y YR 0905 |90 MD S0 6 & B 0 08 0505 | & O W OW O W o

1995 T 4l 600 SO0 o BT & Giss SIS — 1995 6 6> 0RO O D0 RO Q 995 5 00 DO S0MD 66 00D o6 T UG
0,99 099 ¢ 0,99 0000000000 BUNDINGS W O oy o P
0085 | & WEIEOING 9000 & B oses BO S4NE e corinte o o % * 0055 (00 & S0 40 040 & 4O 900
g 6 B 606 40O O W6 & PO, . e ese o v 955 506 606 & 06 & o o000 o0
0,98 £’ 0,98 *—o—w—ro—o—o—oﬁ—.— 098 09— 00—
0975 4 * e 2 s o 0975 |* 2 + 0975 — * aad .

0,97 1 f' 0,97 * 1 l" 0,97 %—0—\:[—
0,965 0,965 0,965

0 s0 100 150 200 0 s0 100 150 200 0 50 100 150 200
7 Rounds 8 Rounds 9 Rounds
1,005 1,005 1,005
1 %06 66 06 00 & o6 1 1
0005 |00 0 & & e & 0,995 00 O SN W WO 00 000 0,995 | 49 © SENIND & 000 90 B O

g * 600 0000 00 WOPINe SW @ 199 TS00000 @ S INING B 000 ¢ 00 g che GO S ie ® o6 os B
0,99 6D 6000 0 VOB IWHINNIDDNO euep 6O 099 0,99
g5 WS _€B0 & @ o o0 * @ 0,085 000 0 o0 Mo o oogs B G B 0 00 66 BEMN
985 T e 0o e o oW @00 < 1985 157006 o o0 06 & 5 T5E 6 66 ® 606 % o N0
0,98 “ 098 0,98
0,975 — * $o ¢ 0975 —* & * — 0,975 - - * *

0,97 1 | 0,97 - ! l" 0,97 \ ,r
0,965 0,965 0,965

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,005 1,01 1,005
1 1 6 w06 0000 06
1
o0 200 @ o0 oou [S 300 Semee o e emete, .
0;3923 A . - e Latee Tl 0000.“.:0 *

- o " woe e ore seee N oo DHED 06 Wwe 0 08 & D0
0985 g - 0,98 s | % TN T W & & ey e
0,98 097 0,975 * ** o
0,975 * ® o) f 4 1 ?

) v 3 0,97 1 ¥

— ey | [0,96 ,
0,97 * 0,965 r
0,965 0,95 0,96
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,005 1,005
1 e e e 6 e & o 1l ¢ 6 ¢0e @6
0995 P0G G0 H00S & & & & 0905 |90 90 0 00000 & & 0000 00
995 T4 0000 & 06 606 06 WHIENGS o W — 995 1 00 & SONO SHB 900 005 sbws P05
0,99 [0 0000060510 04000 WINDIDU 04 0,99 >0 o0
osss O© 00 00 90 00 oo * 00g5 (0O ID S 00 N0 00N N @
g G AR RV Kt g s » W *
098 6 6 66 46 6B 6 o & 098 W6 & 66 & e o0
0975 | * o 0975 — -
0,97 1| f 0,97 1| f
0,965 0,965
0 50 100 150 200 0 50 100 150 200

Figure A.7.. CBC Mode: detailed results

40

41

1 Rounds 2 Rounds 3 Rounds
1,01 1,01 1,01
1 O GO KO0 0 DOCOUW 0RO O 1 1D C0DD IGO0 0 00 O G000 & WO O 1 G0 @XM 00 O 000 W &
090 (@000 enee . 0o [SHED DO CUMNEEDIMNBMO O 099 [SHED D OB @ 200D BUIMBNOIW
ooz 90O IO 0000 M enemre0e e ooz | G SO WMNBI owe sow % o PG990 00 ¢ 90000 ¢ B0 3
5 % e e senee X * %o o ' BIP N NG 0000 NON g o > e - ®Wes 40 00 o o0
0,97 L 2 * L e 2 097 & * * +** 0,97 *» a4
09% 2 F 09 e 1 I 0% + —F
0,95 0,95 0,95
0 50 100 150 200 0 50 100 150 200 [50 100 150 200
4 Rounds 5 Rounds 6 Rounds
1,01 1,01 1,01
1 G00BMOMmE COIOUNS & 0D GO0 SO 1 1 @G0 ¢ 000 000G B CUDADO WRE>
wow o
OB 0 ERIO 4RO SOVTHRIIO IO * * 0,99
0,99 0,99 L R R R R i d
gos PO IS S00Wsonnww s w ges P ® O S0 0 00000 00000 0,98 . . e &
" [ew oo 0 000 o0 s S0 T [owoame o o oc0e o - 097 o —o—wr—ws>
0,97 > * 0,97 > ® * 1 r
rs r 1* 1 0% —
0,96 t } 0,96 1 { 0,95 .
0,95 0,95 * 094
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
7 Rounds 8 Rounds 9 Rounds
1,01 1,01 1,01
1@ 0000 O 00NMD IBONRIID 6B O 00 1 1
0,99 - * oo, 0,99 0,99
© OOEDMD CROT KO CO > B0 * G g
0,98 00 SHO-CHE> € SO > GOD W QOOROD G GO0 & D 4D 0O *
po L4 ® O S0 Swane 0,98 0,98
097 Feve - “weoee o0 o *e ® se 3 0B W0 & o
» 0,97 0,97
0,96 1 ®or L 2 4 * . £ 4 *®
0,95 . - 0,96 ¢ — - 1 [0,96 1 I
0,94 0,95 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
10 Rounds 11 Rounds 12 Rounds
1,01 1,01 1,01
1 0 GD 0000 B0 S0 B WOGEO & VONS> EDEN> 1 [0000600 04D 0000 4UNUNIH 4D 4BOH 1 0600@O 40000 © WO FOBWO HHO® WO
0,99 * 0% oo o o0 100urS S040600 0o (G & B S1G0Ee b SeMmME MR BU L LS S
’ ’F * g @0 0,
X FEEROOOOED
oos | B WSO was o swe o 0% [Sas o8 46 o %o oF oos B 00 o e O
s o0 o o - * 097 o - - *e ®e o o o ¢ S
e A6 S S S 0,96 1 I 0,97 o0 -
0,96 + 2 1 f 095 0,96 1 f
0,95 0,94 LJ 0,95
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
13 Rounds 14 Rounds
1,01 1,01
10000 @ XD OO NOROOCHWD > 1| 0000 000000 S IEHIN® 06
0,99 SO 400 & & 0,99 *
op [FHINOS e0e ¢ 00 X ks nog P ONPNBENS wee ¢+ weme IS tend
4 0 HBee awm s e o G * S o000 06 o0 o
0,97 * had > & 0,97 *
0 & ——& & [096 L f
0,95 * * 0,95 .
0,94 0,94
0 50 100 150 200 0 50 100 150 200

Figure A.8.: Random Plaintext / Cyphertext: detailed results

Bibliography

1]

2l

3]

4]

5]

(6]

7]

8]

9]

INFORMATION TECHNOLOGY LABORATORY (NATIONAL INSTITUTE OF STAN-
DARDS AND TECHNOLOGY): Announcing the ADVANCED ENCRYPTION
STANDARD (AES). Gaithersburg, MD 20899-8930, November 2001. — Techni-
cal Report. — Federal Information Processing Standards Publication 197

ANDERSON, Ross ; BiHaM, Eli ; KNUDSEN, Lars: Serpent: A Flexible Block

Cipher With Maximum Assurance. In: In The First Advanced Encryption Standard
Candidate Conference, 1998

BUCHMANN, Johannes A.: Introduction to Cryptography. Springer-Verlag New
York, Inc., 2000

CAROLYNN BURWICK, Edward D’Avignon Rosario Gennaro Shai Halevi Charanjit
Jutla Stephen M. Matyas Jr. Luke O’Connor Mohammad Peyravian David Safford
Nevenko Z. Don Coppersmith C. Don Coppersmith: MARS - a candidate cipher
for AES, 1999

CONTINI, Scott ; YIN, Yiqun L.: On differential properties of data-dependent
rotations and their use in MARS and RC6 (Extended Abstract). In: Proceedings
of The Second AES Candidate Conference, S. 230-239

JUAN SOTO, Jr.: Randomness Testing of the Advanced Encryption Standard Can-
didate Algorithms. In: NIST IR 6390, National Institute of Standards and Tech-
nology. Gaithersburg, MD 20899-8930, September 1999

R1vEST, Ronald L. ; RoBsHAw, M. J. B. ; SIDNEY, R. ; YIN, Y. L.: The RC6
TM Block Cipher. In: Tn First Advanced Encryption Standard (AES) Conference,
1998

RUKHIN, Andrew ; SOTO, Juan ; NECHVATAL, James ; SMID, Miles ; BARKER,
Elaine ; LEIGH, Stefan ; LEVENSON, Mark ; VANGEL, Mark ; BANKS, David ;
HECKERT, Alan ; DRAY, James ; VO, San: A Statistical Test Suite for Ran-
dom and Pseudorandom Number Generators for Cryptographic Applications / Na-
tional Institute of Standards and Technology. Version: April 2010. http://csrc.
nist.gov/groups/ST/toolkit/rng/documentation_software.html. Gaithers-
burg, MD 20899-8930, April 2010. — Technical Report. — Special Publication 800-22,
Revision 1a

SCHNEIER, Bruce ; KELSEY, John ; WHITING, Doug ; WAGNER, David ; HALL,
Chris ; FERGUSON, Niels: Twofish: A 128-Bit Block Cipher. In: In First Advanced
Encryption Standard (AES) Conference, 1998

http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html

Bibliography

[10] SoTO, Juan ; BASSHAM, Lawrence: Randomness Testing of the Advanced En-
cryption Standard Finalist Candidates. In: NIST IR 6483, National Institute of
Standards and Technology. Gaithersburg, MD 20899-8930, March 2000

[11] TONNIS, Andreas: Implementierung und Analyse eines Verschlisselungsverfahrens
mit schliisselgesteuerter Operationsauswahl, RWTH Aachen, Bachelorthesis, April
2010

43

Statement of Authorship

I declare that this document and the accompanying code has been composed by myself,
and describes my own work, unless otherwise acknowledged in the text. It has not
been accepted in any previous application for a degree. All verbatim extracts have been
distinguished by quotation marks, and all sources of information have been specifically

acknowledged.

Aachen, March 27, 2011,

Tammo Ippen

	Introduction
	State of the Art

	Algorithms
	Design Space
	Operations
	Addition
	XOR
	Rotation
	Negation
	Multiplication

	Permutation
	Address Permutation
	Block Permutation

	Feistel Network
	F-Box
	E-Function
	Multiply-With-Carry (MWC)

	Possible Conjunctions
	KOOS – The Final Algorithm
	The Parameter
	Encrypt and Decrypt
	Key Extension

	Analysis
	Statistical Test Suite
	Sets of Data
	STS Tests
	Results

	Performance

	Conclusion and Further Researches
	Appendix
	Extract Parameter
	Encryption and Decryption
	Detailed Analysis Charts

